Mostrar el registro sencillo del ítem
dc.contributor.author | CARBONELL, ALBERTO | es_ES |
dc.contributor.author | Lisón, Purificación | es_ES |
dc.contributor.author | Daròs, José-Antonio | es_ES |
dc.date.accessioned | 2021-02-03T04:34:02Z | |
dc.date.available | 2021-02-03T04:34:02Z | |
dc.date.issued | 2019-11 | es_ES |
dc.identifier.issn | 0960-7412 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/160607 | |
dc.description.abstract | [EN] RNA interference (RNAi)-based tools are used in multiple organisms to induce antiviral resistance through the sequence-specific degradation of target RNAs by complementary small RNAs. In plants, highly specific antiviral RNAi-based tools include artificial microRNAs (amiRNAs) and synthetic trans-acting small interfering RNAs (syn-tasiRNAs). syn-tasiRNAs have emerged as a promising antiviral tool allowing for the multi-targeting of viral RNAs through the simultaneous expression of several syn-tasiRNAs from a single precursor. Here, we compared in tomato plants the effects of an amiRNA construct expressing a single amiRNA and a syn-tasiRNA construct expressing four different syn-tasiRNAs against Tomato spotted wilt virus (TSWV), an economically important pathogen affecting tomato crops worldwide. Most of the syn-tasiRNA lines were resistant to TSWV, whereas the majority of the amiRNA lines were susceptible and accumulated viral progenies with mutations in the amiRNA target site. Only the two amiRNA lines with higher amiRNA accumulation were resistant, whereas resistance in syn-tasiRNA lines was not exclusive of lines with high syn-tasiRNA accumulation. Collectively, these results suggest that syn-tasiRNAs induce enhanced antiviral resistance because of the combined silencing effect of each individual syn-tasiRNA, which minimizes the possibility that the virus simultaneously mutates all different target sites to fully escape each syn-tasiRNA. | es_ES |
dc.description.sponsorship | We thank V. Aragones and E. Moya for invaluable technical assistance. This work was supported by grants from Ministerio de Ciencia, Innovacion y Universidades (MCIU, Spain), Agencia Estatal de Investigacion (AEI, Spain) and Fondo Europeo de Desarrollo Regional (FEDER, European Union) (RTI2018-095118-A-100 and RYC-2017-21648 to A.C.; BIO2017-83184-R to J.-A.D.). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Blackwell Publishing | es_ES |
dc.relation.ispartof | The Plant Journal | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Syn-tasiRNA | es_ES |
dc.subject | Antiviral resistance | es_ES |
dc.subject | AmiRNA | es_ES |
dc.subject | RNA silencing | es_ES |
dc.subject | Solanum lycopersicum | es_ES |
dc.subject | Tomato spotted wilt virus | es_ES |
dc.subject.classification | BIOQUIMICA Y BIOLOGIA MOLECULAR | es_ES |
dc.title | Multi-targeting of viral RNAs with synthetic trans-acting small interfering RNAs enhances plant antiviral resistance | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1111/tpj.14466 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIO2017-83184-R/ES/VIRUS DE PLANTAS: PATOGENOS Y TAMBIEN VECTORES PARA LA PRODUCCION DE PROTEINAS, METABOLITOS, RNAS Y NANOPARTICULAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-095118-A-I00/ES/COMPLEJOS ARGONAUTA1 DE PLANTAS: IDENTIFICACION DE SUS COMPONENTES PROTEICOS Y DE RNA, Y AJUSTE FINO DEL SILENCIAMIENTO MEDIANTE SU PROGRAMACION POR PEQUEÑOS RNAS ARTIFICIALES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//RYC-2017-21648/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.description.bibliographicCitation | Carbonell, A.; Lisón, P.; Daròs, J. (2019). Multi-targeting of viral RNAs with synthetic trans-acting small interfering RNAs enhances plant antiviral resistance. The Plant Journal. 100(4):720-737. https://doi.org/10.1111/tpj.14466 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1111/tpj.14466 | es_ES |
dc.description.upvformatpinicio | 720 | es_ES |
dc.description.upvformatpfin | 737 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 100 | es_ES |
dc.description.issue | 4 | es_ES |
dc.identifier.pmid | 31350772 | es_ES |
dc.identifier.pmcid | PMC6899541 | es_ES |
dc.relation.pasarela | S\392435 | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Ai, T., Zhang, L., Gao, Z., Zhu, C. X., & Guo, X. (2011). Highly efficient virus resistance mediated by artificial microRNAs that target the suppressor of PVX and PVY in plants. Plant Biology, 13(2), 304-316. doi:10.1111/j.1438-8677.2010.00374.x | es_ES |
dc.description.references | Ali, Z., Ali, S., Tashkandi, M., Zaidi, S. S.-A., & Mahfouz, M. M. (2016). CRISPR/Cas9-Mediated Immunity to Geminiviruses: Differential Interference and Evasion. Scientific Reports, 6(1). doi:10.1038/srep26912 | es_ES |
dc.description.references | Berkhout, B., & Das, A. T. (2012). HIV-1 Escape From RNAi Antivirals: Yet Another Houdini Action? Molecular Therapy - Nucleic Acids, 1, e26. doi:10.1038/mtna.2012.22 | es_ES |
dc.description.references | Bishop, K. N., Holmes, R. K., Sheehy, A. M., & Malim, M. H. (2004). APOBEC-Mediated Editing of Viral RNA. Science, 305(5684), 645-645. doi:10.1126/science.1100658 | es_ES |
dc.description.references | Ter Brake, O., Konstantinova, P., Ceylan, M., & Berkhout, B. (2006). Silencing of HIV-1 with RNA Interference: a Multiple shRNA Approach. Molecular Therapy, 14(6), 883-892. doi:10.1016/j.ymthe.2006.07.007 | es_ES |
dc.description.references | Brodersen, P., Sakvarelidze-Achard, L., Bruun-Rasmussen, M., Dunoyer, P., Yamamoto, Y. Y., Sieburth, L., & Voinnet, O. (2008). Widespread Translational Inhibition by Plant miRNAs and siRNAs. Science, 320(5880), 1185-1190. doi:10.1126/science.1159151 | es_ES |
dc.description.references | Carbonell, A. (2017). Artificial small RNA-based strategies for effective and specific gene silencing in plants. Plant gene silencing: mechanisms and applications, 110-127. doi:10.1079/9781780647678.0110 | es_ES |
dc.description.references | Carbonell, A. (2019). Design and High-Throughput Generation of Artificial Small RNA Constructs for Plants. Plant MicroRNAs, 247-260. doi:10.1007/978-1-4939-9042-9_19 | es_ES |
dc.description.references | Carbonell, A. (2019). Secondary Small Interfering RNA-Based Silencing Tools in Plants: An Update. Frontiers in Plant Science, 10. doi:10.3389/fpls.2019.00687 | es_ES |
dc.description.references | Carbonell, A., & Daròs, J.-A. (2017). Artificial microRNAs and synthetictrans-acting small interfering RNAs interfere with viroid infection. Molecular Plant Pathology, 18(5), 746-753. doi:10.1111/mpp.12529 | es_ES |
dc.description.references | Carbonell, A., & Daròs, J.-A. (2019). Design, Synthesis, and Functional Analysis of Highly Specific Artificial Small RNAs with Antiviral Activity in Plants. Antiviral Resistance in Plants, 231-246. doi:10.1007/978-1-4939-9635-3_13 | es_ES |
dc.description.references | Carbonell, A., Takeda, A., Fahlgren, N., Johnson, S. C., Cuperus, J. T., & Carrington, J. C. (2014). New Generation of Artificial MicroRNA and Synthetic Trans-Acting Small Interfering RNA Vectors for Efficient Gene Silencing in Arabidopsis. Plant Physiology, 165(1), 15-29. doi:10.1104/pp.113.234989 | es_ES |
dc.description.references | Carbonell, A., Fahlgren, N., Mitchell, S., Cox, K. L., Reilly, K. C., Mockler, T. C., & Carrington, J. C. (2015). Highly specific gene silencing in a monocot species by artificial micro RNA s derived from chimeric mi RNA precursors. The Plant Journal, 82(6), 1061-1075. doi:10.1111/tpj.12835 | es_ES |
dc.description.references | Carbonell, A., López, C., & Daròs, J.-A. (2019). Fast-Forward Identification of Highly Effective Artificial Small RNAs Against Different Tomato spotted wilt virus Isolates. Molecular Plant-Microbe Interactions®, 32(2), 142-156. doi:10.1094/mpmi-05-18-0117-ta | es_ES |
dc.description.references | Bhushan, K. (2018). CRISPR/Cas13a targeting of RNA virus in plants. Plant Cell Reports, 37(12), 1707-1712. doi:10.1007/s00299-018-2297-2 | es_ES |
dc.description.references | Chen, L., Cheng, X., Cai, J., Zhan, L., Wu, X., Liu, Q., & Wu, X. (2016). Multiple virus resistance using artificial trans-acting siRNAs. Journal of Virological Methods, 228, 16-20. doi:10.1016/j.jviromet.2015.11.004 | es_ES |
dc.description.references | Cullen, B. R. (2006). Role and Mechanism of Action of the APOBEC3 Family of Antiretroviral Resistance Factors. Journal of Virology, 80(3), 1067-1076. doi:10.1128/jvi.80.3.1067-1076.2006 | es_ES |
dc.description.references | Cuperus, J. T., Carbonell, A., Fahlgren, N., Garcia-Ruiz, H., Burke, R. T., Takeda, A., … Carrington, J. C. (2010). Unique functionality of 22-nt miRNAs in triggering RDR6-dependent siRNA biogenesis from target transcripts in Arabidopsis. Nature Structural & Molecular Biology, 17(8), 997-1003. doi:10.1038/nsmb.1866 | es_ES |
dc.description.references | Debreczeni, D. E., López, C., Aramburu, J., Darós, J. A., Soler, S., Galipienso, L., … Rubio, L. (2015). Complete sequence of three different biotypes of tomato spotted wilt virus (wild type, tomato Sw-5 resistance-breaking and pepper Tsw resistance-breaking) from Spain. Archives of Virology, 160(8), 2117-2123. doi:10.1007/s00705-015-2453-8 | es_ES |
dc.description.references | Ding, S.-W. (2010). RNA-based antiviral immunity. Nature Reviews Immunology, 10(9), 632-644. doi:10.1038/nri2824 | es_ES |
dc.description.references | Von Eije, K. J., Brake, O. ter, & Berkhout, B. (2008). Human Immunodeficiency Virus Type 1 Escape Is Restricted When Conserved Genome Sequences Are Targeted by RNA Interference. Journal of Virology, 82(6), 2895-2903. doi:10.1128/jvi.02035-07 | es_ES |
dc.description.references | Ellul, P., Garcia-Sogo, B., Pineda, B., Ríos, G., Roig, L., & Moreno, V. (2003). The ploidy level of transgenic plants in Agrobacterium-mediated transformation of tomato cotyledons (Lycopersicon esculentum L.Mill.) is genotype and procedure dependent. Theoretical and Applied Genetics, 106(2), 231-238. doi:10.1007/s00122-002-0928-y | es_ES |
dc.description.references | Fahim, M., Millar, A. A., Wood, C. C., & Larkin, P. J. (2011). Resistance to Wheat streak mosaic virus generated by expression of an artificial polycistronic microRNA in wheat. Plant Biotechnology Journal, 10(2), 150-163. doi:10.1111/j.1467-7652.2011.00647.x | es_ES |
dc.description.references | Fahlgren, N., & Carrington, J. C. (2009). miRNA Target Prediction in Plants. Plant MicroRNAs, 51-57. doi:10.1007/978-1-60327-005-2_4 | es_ES |
dc.description.references | Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., & Mello, C. C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391(6669), 806-811. doi:10.1038/35888 | es_ES |
dc.description.references | Gitlin, L., Stone, J. K., & Andino, R. (2005). Poliovirus Escape from RNA Interference: Short Interfering RNA-Target Recognition and Implications for Therapeutic Approaches. Journal of Virology, 79(2), 1027-1035. doi:10.1128/jvi.79.2.1027-1035.2005 | es_ES |
dc.description.references | Khan, M. Z., Amin, I., Hameed, A., & Mansoor, S. (2018). CRISPR–Cas13a: Prospects for Plant Virus Resistance. Trends in Biotechnology, 36(12), 1207-1210. doi:10.1016/j.tibtech.2018.05.005 | es_ES |
dc.description.references | Khan, M. Z., Haider, S., Mansoor, S., & Amin, I. (2019). Targeting Plant ssDNA Viruses with Engineered Miniature CRISPR-Cas14a. Trends in Biotechnology, 37(8), 800-804. doi:10.1016/j.tibtech.2019.03.015 | es_ES |
dc.description.references | Kis, A., Tholt, G., Ivanics, M., Várallyay, É., Jenes, B., & Havelda, Z. (2015). Polycistronic artificial miRNA-mediated resistance toWheat dwarf virusin barley is highly efficient at low temperature. Molecular Plant Pathology, 17(3), 427-437. doi:10.1111/mpp.12291 | es_ES |
dc.description.references | KUNG, Y.-J., LIN, S.-S., HUANG, Y.-L., CHEN, T.-C., HARISH, S. S., CHUA, N.-H., & YEH, S.-D. (2011). Multiple artificial microRNAs targeting conserved motifs of the replicase gene confer robust transgenic resistance to negative-sense single-stranded RNA plant virus. Molecular Plant Pathology, 13(3), 303-317. doi:10.1111/j.1364-3703.2011.00747.x | es_ES |
dc.description.references | Lafforgue, G., Martinez, F., Sardanyes, J., de la Iglesia, F., Niu, Q.-W., Lin, S.-S., … Elena, S. F. (2011). Tempo and Mode of Plant RNA Virus Escape from RNA Interference-Mediated Resistance. Journal of Virology, 85(19), 9686-9695. doi:10.1128/jvi.05326-11 | es_ES |
dc.description.references | Lafforgue, G., Martinez, F., Niu, Q.-W., Chua, N.-H., Daros, J.-A., & Elena, S. F. (2013). Improving the Effectiveness of Artificial MicroRNA (amiR)-Mediated Resistance against Turnip Mosaic Virus by Combining Two amiRs or by Targeting Highly Conserved Viral Genomic Regions. Journal of Virology, 87(14), 8254-8256. doi:10.1128/jvi.00914-13 | es_ES |
dc.description.references | Levanova, A., & Poranen, M. M. (2018). RNA Interference as a Prospective Tool for the Control of Human Viral Infections. Frontiers in Microbiology, 9. doi:10.3389/fmicb.2018.02151 | es_ES |
dc.description.references | Lin, S.-S., Wu, H.-W., Elena, S. F., Chen, K.-C., Niu, Q.-W., Yeh, S.-D., … Chua, N.-H. (2009). Molecular Evolution of a Viral Non-Coding Sequence under the Selective Pressure of amiRNA-Mediated Silencing. PLoS Pathogens, 5(2), e1000312. doi:10.1371/journal.ppat.1000312 | es_ES |
dc.description.references | Liu, Q., Wang, F., & Axtell, M. J. (2014). Analysis of Complementarity Requirements for Plant MicroRNA Targeting Using a Nicotiana benthamiana Quantitative Transient Assay . The Plant Cell, 26(2), 741-753. doi:10.1105/tpc.113.120972 | es_ES |
dc.description.references | Llave, C., Xie, Z., Kasschau, K. D., & Carrington, J. C. (2002). Cleavage of Scarecrow-like mRNA Targets Directed by a Class of Arabidopsis miRNA. Science, 297(5589), 2053-2056. doi:10.1126/science.1076311 | es_ES |
dc.description.references | Mahas, A., & Mahfouz, M. (2018). Engineering virus resistance via CRISPR–Cas systems. Current Opinion in Virology, 32, 1-8. doi:10.1016/j.coviro.2018.06.002 | es_ES |
dc.description.references | Martínez, F., Lafforgue, G., Morelli, M. J., González-Candelas, F., Chua, N.-H., Daròs, J.-A., & Elena, S. F. (2012). Ultradeep Sequencing Analysis of Population Dynamics of Virus Escape Mutants in RNAi-Mediated Resistant Plants. Molecular Biology and Evolution, 29(11), 3297-3307. doi:10.1093/molbev/mss135 | es_ES |
dc.description.references | Mehta, D., Stürchler, A., Anjanappa, R. B., Zaidi, S. S.-A., Hirsch-Hoffmann, M., Gruissem, W., & Vanderschuren, H. (2019). Linking CRISPR-Cas9 interference in cassava to the evolution of editing-resistant geminiviruses. Genome Biology, 20(1). doi:10.1186/s13059-019-1678-3 | es_ES |
dc.description.references | Mitter, N., Zhai, Y., Bai, A. X., Chua, K., Eid, S., Constantin, M., … Pappu, H. R. (2016). Evaluation and identification of candidate genes for artificial microRNA-mediated resistance to tomato spotted wilt virus. Virus Research, 211, 151-158. doi:10.1016/j.virusres.2015.10.003 | es_ES |
dc.description.references | Montgomery, T. A., Howell, M. D., Cuperus, J. T., Li, D., Hansen, J. E., Alexander, A. L., … Carrington, J. C. (2008). Specificity of ARGONAUTE7-miR390 Interaction and Dual Functionality in TAS3 Trans-Acting siRNA Formation. Cell, 133(1), 128-141. doi:10.1016/j.cell.2008.02.033 | es_ES |
dc.description.references | Montgomery, T. A., Yoo, S. J., Fahlgren, N., Gilbert, S. D., Howell, M. D., Sullivan, C. M., … Carrington, J. C. (2008). AGO1-miR173 complex initiates phased siRNA formation in plants. Proceedings of the National Academy of Sciences, 105(51), 20055-20062. doi:10.1073/pnas.0810241105 | es_ES |
dc.description.references | Nishitsuji, H., Kohara, M., Kannagi, M., & Masuda, T. (2006). Effective Suppression of Human Immunodeficiency Virus Type 1 through a Combination of Short- or Long-Hairpin RNAs Targeting Essential Sequences for Retroviral Integration. Journal of Virology, 80(15), 7658-7666. doi:10.1128/jvi.00078-06 | es_ES |
dc.description.references | Niu, Q.-W., Lin, S.-S., Reyes, J. L., Chen, K.-C., Wu, H.-W., Yeh, S.-D., & Chua, N.-H. (2006). Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nature Biotechnology, 24(11), 1420-1428. doi:10.1038/nbt1255 | es_ES |
dc.description.references | Presloid, J., & Novella, I. (2015). RNA Viruses and RNAi: Quasispecies Implications for Viral Escape. Viruses, 7(6), 3226-3240. doi:10.3390/v7062768 | es_ES |
dc.description.references | Qu, J., Ye, J., & Fang, R. (2007). Artificial MicroRNA-Mediated Virus Resistance in Plants. Journal of Virology, 81(12), 6690-6699. doi:10.1128/jvi.02457-06 | es_ES |
dc.description.references | SCHOLTHOF, K.-B. G., ADKINS, S., CZOSNEK, H., PALUKAITIS, P., JACQUOT, E., HOHN, T., … FOSTER, G. D. (2011). Top 10 plant viruses in molecular plant pathology. Molecular Plant Pathology, 12(9), 938-954. doi:10.1111/j.1364-3703.2011.00752.x | es_ES |
dc.description.references | Schwab, R., Palatnik, J. F., Riester, M., Schommer, C., Schmid, M., & Weigel, D. (2005). Specific Effects of MicroRNAs on the Plant Transcriptome. Developmental Cell, 8(4), 517-527. doi:10.1016/j.devcel.2005.01.018 | es_ES |
dc.description.references | Shah, P. S., Pham, N. P., & Schaffer, D. V. (2012). HIV Develops Indirect Cross-resistance to Combinatorial RNAi Targeting Two Distinct and Spatially Distant Sites. Molecular Therapy, 20(4), 840-848. doi:10.1038/mt.2012.3 | es_ES |
dc.description.references | Simón-Mateo, C., & García, J. A. (2006). MicroRNA-Guided Processing Impairs Plum Pox Virus Replication, but the Virus Readily Evolves To Escape This Silencing Mechanism. Journal of Virology, 80(5), 2429-2436. doi:10.1128/jvi.80.5.2429-2436.2006 | es_ES |
dc.description.references | Tashkandi, M., Ali, Z., Aljedaani, F., Shami, A., & Mahfouz, M. M. (2018). Engineering resistance against Tomato yellow leaf curl virus via the CRISPR/Cas9 system in tomato. Plant Signaling & Behavior, 13(10), e1525996. doi:10.1080/15592324.2018.1525996 | es_ES |
dc.description.references | Turina, M., Kormelink, R., & Resende, R. O. (2016). Resistance to Tospoviruses in Vegetable Crops: Epidemiological and Molecular Aspects. Annual Review of Phytopathology, 54(1), 347-371. doi:10.1146/annurev-phyto-080615-095843 | es_ES |
dc.description.references | Wang, G., Zhao, N., Berkhout, B., & Das, A. T. (2016). CRISPR-Cas9 Can Inhibit HIV-1 Replication but NHEJ Repair Facilitates Virus Escape. Molecular Therapy, 24(3), 522-526. doi:10.1038/mt.2016.24 | es_ES |
dc.description.references | Wang, Z., Pan, Q., Gendron, P., Zhu, W., Guo, F., Cen, S., … Liang, C. (2016). CRISPR/Cas9-Derived Mutations Both Inhibit HIV-1 Replication and Accelerate Viral Escape. Cell Reports, 15(3), 481-489. doi:10.1016/j.celrep.2016.03.042 | es_ES |
dc.description.references | Yoder, K. E., & Bundschuh, R. (2016). Host Double Strand Break Repair Generates HIV-1 Strains Resistant to CRISPR/Cas9. Scientific Reports, 6(1). doi:10.1038/srep29530 | es_ES |
dc.description.references | Zhang, Z. J. (2014). Artificial trans-acting small interfering RNA: a tool for plant biology study and crop improvements. Planta, 239(6), 1139-1146. doi:10.1007/s00425-014-2054-x | es_ES |