Mostrar el registro sencillo del ítem
dc.contributor.author | García-Fayos, Julio | es_ES |
dc.contributor.author | Sogaard, Martin | es_ES |
dc.contributor.author | Kaiser, Andreas | es_ES |
dc.contributor.author | Serra Alfaro, José Manuel | es_ES |
dc.date.accessioned | 2021-02-03T04:34:15Z | |
dc.date.available | 2021-02-03T04:34:15Z | |
dc.date.issued | 2019-06-01 | es_ES |
dc.identifier.issn | 1383-5866 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/160613 | |
dc.description.abstract | [EN] Oxygen Transport Membranes (OTMs) present a high potential for being considered in the integration of O-2 supply systems in oxyfuel installations, as well as for the conduction of chemical reactions when operating Catalytic Membrane Reactors (CMRs). Several solutions are being prospected for overcoming the main drawbacks regarding materials stability and membrane performance. A highly stable material such as Ce0.9Gd0.1O1.95(CGO) doped with 2% mol. Co was studied as a 40 mu m-thick CGO supported CGO membrane. This membrane was characterized by studying its performance as oxygen permeation membrane for the production of oxygen under oxyfuel conditions and for the conduction of chemical reactions involving CH4. In order to improve oxygen surface reactions and consequently, the oxygen permeation, the membrane was surface activated with the addition of Pd nanoparticles. A broad characterization consisting of the study of O-2 production under different environments simulating real application conditions was conducted by subjecting the membrane to Ar, CO2 and CH4 environments in the temperature range of 750 to 1000 degrees C. A peak oxygen flux of 7.8 ml.min(-1)cm(-2) was obtained at 1000 degrees C when using a sweep consisting of 75% CH4 in Ar. This flux corresponds to a 16-fold improvement in the O-2 permeation at 1000 degrees C when sweeping with Ar, with an oxygen flux of 0.47 ml.min(-1).cm(-2). An oxygen flux of 1.2 ml.min(-1).cm(-2) was obtained at 1000 degrees C when feeding with pO(2) = 1 atm in feed side. Membrane performance under CO2-containing environments showed a positive effect of CO2 on permeation at 1000-900 degrees C, reaching up to 0.59 ml.min(-1).cm(-2) O-2 at 1000 degrees C. A continuous exposure of CO2 during 48 h at 750 degrees C resulted in a slight J(O-2) increase, with a reversible reduction in performance when returning to clean conditions, thus demonstrating high stability of CGO membranes. | es_ES |
dc.description.sponsorship | Financial support by the Spanish Ministry for Science and Innovation (Project ENE2008-06302) and by the EU through FP7 NASA-OTM Project (NMP3-SL-2009- 228701) is kindly acknowledged. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Separation and Purification Technology | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Cerium gadolinium oxide | es_ES |
dc.subject | Supported membrane | es_ES |
dc.subject | Catalyst | es_ES |
dc.subject | Tape casting | es_ES |
dc.subject | MIEC | es_ES |
dc.subject | Syngas | es_ES |
dc.subject | Oxyfuel | es_ES |
dc.title | Oxygen permeation studies in surface Pd-activated asymmetric Ce0.9Gd0.1O1.95 membranes for application in CO2 and CH4 environments | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.seppur.2019.01.068 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/228701/EU/NAnostructured Surface Activated ultra-thin Oxygen Transport Membrane/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//ENE2008-06302/ES/BUSQUEDA DE NUEVOS MATERIALES CONDUCTORES DE OXIGENO E HIDROGENO EN ESTADO SOLIDO MEDIANTE QUIMICA COMBINATORIA/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | García-Fayos, J.; Sogaard, M.; Kaiser, A.; Serra Alfaro, JM. (2019). Oxygen permeation studies in surface Pd-activated asymmetric Ce0.9Gd0.1O1.95 membranes for application in CO2 and CH4 environments. Separation and Purification Technology. 216:58-64. https://doi.org/10.1016/j.seppur.2019.01.068 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.seppur.2019.01.068 | es_ES |
dc.description.upvformatpinicio | 58 | es_ES |
dc.description.upvformatpfin | 64 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 216 | es_ES |
dc.relation.pasarela | S\383774 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | OECD, Electricity Generation, OECD Publishing. | es_ES |
dc.description.references | I.E. Agency, CO2 Emissions from Fuel Combustion 2012, OECD Publishing. | es_ES |
dc.description.references | Yörük, C. R., Trikkel, A., & Kuusik, R. (2016). Prediction of Flue Gas Composition and Comparative Overall Process Evaluation for Air and Oxyfuel Combustion of Estonian Oil Shale, Using Aspen Plus Process Simulation. Energy & Fuels, 30(7), 5893-5900. doi:10.1021/acs.energyfuels.6b00022 | es_ES |
dc.description.references | Perrin, N., Dubettier, R., Lockwood, F., Tranier, J.-P., Bourhy-Weber, C., & Terrien, P. (2015). Oxycombustion for coal power plants: Advantages, solutions and projects. Applied Thermal Engineering, 74, 75-82. doi:10.1016/j.applthermaleng.2014.03.074 | es_ES |
dc.description.references | ARNOLD, M., WANG, H., & FELDHOFF, A. (2007). Influence of CO2 on the oxygen permeation performance and the microstructure of perovskite-type (Ba0.5Sr0.5)(Co0.8Fe0.2)O3−δ membranes. Journal of Membrane Science, 293(1-2), 44-52. doi:10.1016/j.memsci.2007.01.032 | es_ES |
dc.description.references | Waindich, A., Möbius, A., & Müller, M. (2009). Corrosion of Ba1−xSrxCo1−yFeyO3−δ and La0.3Ba0.7Co0.2Fe0.8O3−δ materials for oxygen separating membranes under Oxycoal conditions. Journal of Membrane Science, 337(1-2), 182-187. doi:10.1016/j.memsci.2009.03.041 | es_ES |
dc.description.references | Kaiser, A., Foghmoes, S., Chatzichristodoulou, C., Søgaard, M., Glasscock, J. A., Frandsen, H. L., & Hendriksen, P. V. (2011). Evaluation of thin film ceria membranes for syngas membrane reactors—Preparation, characterization and testing. Journal of Membrane Science, 378(1-2), 51-60. doi:10.1016/j.memsci.2010.12.012 | es_ES |
dc.description.references | Lobera, M. P., Serra, J. M., Foghmoes, S. P., Søgaard, M., & Kaiser, A. (2011). On the use of supported ceria membranes for oxyfuel process/syngas production. Journal of Membrane Science, 385-386, 154-161. doi:10.1016/j.memsci.2011.09.031 | es_ES |
dc.description.references | Park, H. J., & Choi, G. M. (2004). Oxygen permeability of gadolinium-doped ceria at high temperature. Journal of the European Ceramic Society, 24(6), 1313-1317. doi:10.1016/s0955-2219(03)00555-7 | es_ES |
dc.description.references | Kharton, V. (2003). Oxygen transport in Ce0.8Gd0.2O2−δ-based composite membranes. Solid State Ionics, 160(3-4), 247-258. doi:10.1016/s0167-2738(03)00183-8 | es_ES |
dc.description.references | Kagomiya, I., Iijima, T., & Takamura, H. (2006). Oxygen permeability of nanocrystalline Ce0.8Gd0.2O1.9–CoFe2O4 mixed-conductive films. Journal of Membrane Science, 286(1-2), 180-184. doi:10.1016/j.memsci.2006.09.032 | es_ES |
dc.description.references | Wang, B., Yi, J., Winnubst, L., & Chen, C. (2006). Stability and oxygen permeation behavior of Ce0.8Sm0.2O2−δ–La0.8Sr0.2CrO3−δ composite membrane under large oxygen partial pressure gradients. Journal of Membrane Science, 286(1-2), 22-25. doi:10.1016/j.memsci.2006.06.009 | es_ES |
dc.description.references | Yoon, J. S., Yoon, M. Y., Lee, E. J., Moon, J.-W., & Hwang, H. J. (2010). Influence of Ce0.9Gd0.1O2−δ particles on microstructure and oxygen permeability of Ba0.5Sr0.5Co0.8Fe0.2O3−δ composite membrane. Solid State Ionics, 181(29-30), 1387-1393. doi:10.1016/j.ssi.2010.06.056 | es_ES |
dc.description.references | Choi, M.-B., Jeon, S.-Y., Hwang, H.-J., Park, J.-Y., & Song, S.-J. (2010). Composite of Ce0.8Gd0.2O2−δ and GdBaCo2O5+δ as oxygen separation membranes. Solid State Ionics, 181(37-38), 1680-1684. doi:10.1016/j.ssi.2010.09.027 | es_ES |
dc.description.references | Luo, H., Jiang, H., Efimov, K., Liang, F., Wang, H., & Caro, J. (2011). CO2-Tolerant Oxygen-Permeable Fe2O3-Ce0.9Gd0.1O2-δ Dual Phase Membranes. Industrial & Engineering Chemistry Research, 50(23), 13508-13517. doi:10.1021/ie200517t | es_ES |
dc.description.references | Luo, H., Efimov, K., Jiang, H., Feldhoff, A., Wang, H., & Caro, J. (2010). CO2-Stable and Cobalt-Free Dual-Phase Membrane for Oxygen Separation. Angewandte Chemie International Edition, 50(3), 759-763. doi:10.1002/anie.201003723 | es_ES |
dc.description.references | Balaguer, M., Solís, C., & Serra, J. M. (2011). Study of the Transport Properties of the Mixed Ionic Electronic Conductor Ce1−xTbxO2−δ + Co (x = 0.1, 0.2) and Evaluation As Oxygen-Transport Membrane. Chemistry of Materials, 23(9), 2333-2343. doi:10.1021/cm103581w | es_ES |
dc.description.references | Dole, H. A. E., & Baranova, E. A. (2016). Ethylene Oxidation in an Oxygen-Deficient Environment: Why Ceria is an Active Support? ChemCatChem, 8(11), 1977-1986. doi:10.1002/cctc.201600142 | es_ES |
dc.description.references | Lobera, M. P., Balaguer, M., Garcia-Fayos, J., & Serra, J. M. (2012). Rare Earth-doped Ceria Catalysts for ODHE Reaction in a Catalytic Modified MIEC Membrane Reactor. ChemCatChem, 4(12), 2102-2111. doi:10.1002/cctc.201200212 | es_ES |
dc.description.references | Garcia-Fayos, J., Lobera, M. P., Balaguer, M., & Serra, J. M. (2018). Catalyst Screening for Oxidative Coupling of Methane Integrated in Membrane Reactors. Frontiers in Materials, 5. doi:10.3389/fmats.2018.00031 | es_ES |
dc.description.references | Serra, J. M., Garcia-Fayos, J., Baumann, S., Schulze-Küppers, F., & Meulenberg, W. A. (2013). Oxygen permeation through tape-cast asymmetric all-La0.6Sr0.4Co0.2Fe0.8O3−δ membranes. Journal of Membrane Science, 447, 297-305. doi:10.1016/j.memsci.2013.07.030 | es_ES |
dc.description.references | Balaguer, M., García-Fayos, J., Solís, C., & Serra, J. M. (2013). Fast Oxygen Separation Through SO2- and CO2-Stable Dual-Phase Membrane Based on NiFe2O4–Ce0.8Tb0.2O2-δ. Chemistry of Materials, 25(24), 4986-4993. doi:10.1021/cm4034963 | es_ES |
dc.description.references | Garcia-Fayos, J., Balaguer, M., & Serra, J. M. (2015). Dual-Phase Oxygen Transport Membranes for Stable Operation in Environments Containing Carbon Dioxide and Sulfur Dioxide. ChemSusChem, 8(24), 4242-4249. doi:10.1002/cssc.201500951 | es_ES |
dc.description.references | Shao, Z., Xiong, G., Dong, H., Yang, W., & Lin, L. (2001). Synthesis, oxygen permeation study and membrane performance of a Ba0.5Sr0.5Co0.8Fe0.2O3−δ oxygen-permeable dense ceramic reactor for partial oxidation of methane to syngas. Separation and Purification Technology, 25(1-3), 97-116. doi:10.1016/s1383-5866(01)00095-8 | es_ES |
dc.description.references | Yan, A., Liu, B., Dong, Y., Tian, Z., Wang, D., & Cheng, M. (2008). A temperature programmed desorption investigation on the interaction of Ba0.5Sr0.5Co0.8Fe0.2O3−δ perovskite oxides with CO2 in the absence and presence of H2O and O2. Applied Catalysis B: Environmental, 80(1-2), 24-31. doi:10.1016/j.apcatb.2007.11.007 | es_ES |
dc.description.references | Gaudillere, C., Garcia-Fayos, J., Balaguer, M., & Serra, J. M. (2014). Enhanced Oxygen Separation through Robust Freeze-Cast Bilayered Dual-Phase Membranes. ChemSusChem, 7(9), 2554-2561. doi:10.1002/cssc.201402324 | es_ES |
dc.description.references | Weber, W. H., Hass, K. C., & McBride, J. R. (1993). Raman study ofCeO2: Second-order scattering, lattice dynamics, and particle-size effects. Physical Review B, 48(1), 178-185. doi:10.1103/physrevb.48.178 | es_ES |
dc.description.references | Wang, S., Wang, W., Zuo, J., & Qian, Y. (2001). Study of the Raman spectrum of CeO2 nanometer thin films. Materials Chemistry and Physics, 68(1-3), 246-248. doi:10.1016/s0254-0584(00)00357-6 | es_ES |
dc.description.references | Guo, M., Lu, J., Wu, Y., Wang, Y., & Luo, M. (2011). UV and Visible Raman Studies of Oxygen Vacancies in Rare-Earth-Doped Ceria. Langmuir, 27(7), 3872-3877. doi:10.1021/la200292f | es_ES |
dc.description.references | Meng, L., Jia, A.-P., Lu, J.-Q., Luo, L.-F., Huang, W.-X., & Luo, M.-F. (2011). Synergetic Effects of PdO Species on CO Oxidation over PdO–CeO2 Catalysts. The Journal of Physical Chemistry C, 115(40), 19789-19796. doi:10.1021/jp2056688 | es_ES |
dc.description.references | Yacou, C., Sunarso, J., Lin, C. X. C., Smart, S., Liu, S., & Diniz da Costa, J. C. (2011). Palladium surface modified La0.6Sr0.4Co0.2Fe0.8O3−δ hollow fibres for oxygen separation. Journal of Membrane Science, 380(1-2), 223-231. doi:10.1016/j.memsci.2011.07.008 | es_ES |