- -

Oxygen permeation studies in surface Pd-activated asymmetric Ce0.9Gd0.1O1.95 membranes for application in CO2 and CH4 environments

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Oxygen permeation studies in surface Pd-activated asymmetric Ce0.9Gd0.1O1.95 membranes for application in CO2 and CH4 environments

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author García-Fayos, Julio es_ES
dc.contributor.author Sogaard, Martin es_ES
dc.contributor.author Kaiser, Andreas es_ES
dc.contributor.author Serra Alfaro, José Manuel es_ES
dc.date.accessioned 2021-02-03T04:34:15Z
dc.date.available 2021-02-03T04:34:15Z
dc.date.issued 2019-06-01 es_ES
dc.identifier.issn 1383-5866 es_ES
dc.identifier.uri http://hdl.handle.net/10251/160613
dc.description.abstract [EN] Oxygen Transport Membranes (OTMs) present a high potential for being considered in the integration of O-2 supply systems in oxyfuel installations, as well as for the conduction of chemical reactions when operating Catalytic Membrane Reactors (CMRs). Several solutions are being prospected for overcoming the main drawbacks regarding materials stability and membrane performance. A highly stable material such as Ce0.9Gd0.1O1.95(CGO) doped with 2% mol. Co was studied as a 40 mu m-thick CGO supported CGO membrane. This membrane was characterized by studying its performance as oxygen permeation membrane for the production of oxygen under oxyfuel conditions and for the conduction of chemical reactions involving CH4. In order to improve oxygen surface reactions and consequently, the oxygen permeation, the membrane was surface activated with the addition of Pd nanoparticles. A broad characterization consisting of the study of O-2 production under different environments simulating real application conditions was conducted by subjecting the membrane to Ar, CO2 and CH4 environments in the temperature range of 750 to 1000 degrees C. A peak oxygen flux of 7.8 ml.min(-1)cm(-2) was obtained at 1000 degrees C when using a sweep consisting of 75% CH4 in Ar. This flux corresponds to a 16-fold improvement in the O-2 permeation at 1000 degrees C when sweeping with Ar, with an oxygen flux of 0.47 ml.min(-1).cm(-2). An oxygen flux of 1.2 ml.min(-1).cm(-2) was obtained at 1000 degrees C when feeding with pO(2) = 1 atm in feed side. Membrane performance under CO2-containing environments showed a positive effect of CO2 on permeation at 1000-900 degrees C, reaching up to 0.59 ml.min(-1).cm(-2) O-2 at 1000 degrees C. A continuous exposure of CO2 during 48 h at 750 degrees C resulted in a slight J(O-2) increase, with a reversible reduction in performance when returning to clean conditions, thus demonstrating high stability of CGO membranes. es_ES
dc.description.sponsorship Financial support by the Spanish Ministry for Science and Innovation (Project ENE2008-06302) and by the EU through FP7 NASA-OTM Project (NMP3-SL-2009- 228701) is kindly acknowledged. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Separation and Purification Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Cerium gadolinium oxide es_ES
dc.subject Supported membrane es_ES
dc.subject Catalyst es_ES
dc.subject Tape casting es_ES
dc.subject MIEC es_ES
dc.subject Syngas es_ES
dc.subject Oxyfuel es_ES
dc.title Oxygen permeation studies in surface Pd-activated asymmetric Ce0.9Gd0.1O1.95 membranes for application in CO2 and CH4 environments es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.seppur.2019.01.068 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/228701/EU/NAnostructured Surface Activated ultra-thin Oxygen Transport Membrane/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//ENE2008-06302/ES/BUSQUEDA DE NUEVOS MATERIALES CONDUCTORES DE OXIGENO E HIDROGENO EN ESTADO SOLIDO MEDIANTE QUIMICA COMBINATORIA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation García-Fayos, J.; Sogaard, M.; Kaiser, A.; Serra Alfaro, JM. (2019). Oxygen permeation studies in surface Pd-activated asymmetric Ce0.9Gd0.1O1.95 membranes for application in CO2 and CH4 environments. Separation and Purification Technology. 216:58-64. https://doi.org/10.1016/j.seppur.2019.01.068 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.seppur.2019.01.068 es_ES
dc.description.upvformatpinicio 58 es_ES
dc.description.upvformatpfin 64 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 216 es_ES
dc.relation.pasarela S\383774 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references OECD, Electricity Generation, OECD Publishing. es_ES
dc.description.references I.E. Agency, CO2 Emissions from Fuel Combustion 2012, OECD Publishing. es_ES
dc.description.references Yörük, C. R., Trikkel, A., & Kuusik, R. (2016). Prediction of Flue Gas Composition and Comparative Overall Process Evaluation for Air and Oxyfuel Combustion of Estonian Oil Shale, Using Aspen Plus Process Simulation. Energy & Fuels, 30(7), 5893-5900. doi:10.1021/acs.energyfuels.6b00022 es_ES
dc.description.references Perrin, N., Dubettier, R., Lockwood, F., Tranier, J.-P., Bourhy-Weber, C., & Terrien, P. (2015). Oxycombustion for coal power plants: Advantages, solutions and projects. Applied Thermal Engineering, 74, 75-82. doi:10.1016/j.applthermaleng.2014.03.074 es_ES
dc.description.references ARNOLD, M., WANG, H., & FELDHOFF, A. (2007). Influence of CO2 on the oxygen permeation performance and the microstructure of perovskite-type (Ba0.5Sr0.5)(Co0.8Fe0.2)O3−δ membranes. Journal of Membrane Science, 293(1-2), 44-52. doi:10.1016/j.memsci.2007.01.032 es_ES
dc.description.references Waindich, A., Möbius, A., & Müller, M. (2009). Corrosion of Ba1−xSrxCo1−yFeyO3−δ and La0.3Ba0.7Co0.2Fe0.8O3−δ materials for oxygen separating membranes under Oxycoal conditions. Journal of Membrane Science, 337(1-2), 182-187. doi:10.1016/j.memsci.2009.03.041 es_ES
dc.description.references Kaiser, A., Foghmoes, S., Chatzichristodoulou, C., Søgaard, M., Glasscock, J. A., Frandsen, H. L., & Hendriksen, P. V. (2011). Evaluation of thin film ceria membranes for syngas membrane reactors—Preparation, characterization and testing. Journal of Membrane Science, 378(1-2), 51-60. doi:10.1016/j.memsci.2010.12.012 es_ES
dc.description.references Lobera, M. P., Serra, J. M., Foghmoes, S. P., Søgaard, M., & Kaiser, A. (2011). On the use of supported ceria membranes for oxyfuel process/syngas production. Journal of Membrane Science, 385-386, 154-161. doi:10.1016/j.memsci.2011.09.031 es_ES
dc.description.references Park, H. J., & Choi, G. M. (2004). Oxygen permeability of gadolinium-doped ceria at high temperature. Journal of the European Ceramic Society, 24(6), 1313-1317. doi:10.1016/s0955-2219(03)00555-7 es_ES
dc.description.references Kharton, V. (2003). Oxygen transport in Ce0.8Gd0.2O2−δ-based composite membranes. Solid State Ionics, 160(3-4), 247-258. doi:10.1016/s0167-2738(03)00183-8 es_ES
dc.description.references Kagomiya, I., Iijima, T., & Takamura, H. (2006). Oxygen permeability of nanocrystalline Ce0.8Gd0.2O1.9–CoFe2O4 mixed-conductive films. Journal of Membrane Science, 286(1-2), 180-184. doi:10.1016/j.memsci.2006.09.032 es_ES
dc.description.references Wang, B., Yi, J., Winnubst, L., & Chen, C. (2006). Stability and oxygen permeation behavior of Ce0.8Sm0.2O2−δ–La0.8Sr0.2CrO3−δ composite membrane under large oxygen partial pressure gradients. Journal of Membrane Science, 286(1-2), 22-25. doi:10.1016/j.memsci.2006.06.009 es_ES
dc.description.references Yoon, J. S., Yoon, M. Y., Lee, E. J., Moon, J.-W., & Hwang, H. J. (2010). Influence of Ce0.9Gd0.1O2−δ particles on microstructure and oxygen permeability of Ba0.5Sr0.5Co0.8Fe0.2O3−δ composite membrane. Solid State Ionics, 181(29-30), 1387-1393. doi:10.1016/j.ssi.2010.06.056 es_ES
dc.description.references Choi, M.-B., Jeon, S.-Y., Hwang, H.-J., Park, J.-Y., & Song, S.-J. (2010). Composite of Ce0.8Gd0.2O2−δ and GdBaCo2O5+δ as oxygen separation membranes. Solid State Ionics, 181(37-38), 1680-1684. doi:10.1016/j.ssi.2010.09.027 es_ES
dc.description.references Luo, H., Jiang, H., Efimov, K., Liang, F., Wang, H., & Caro, J. (2011). CO2-Tolerant Oxygen-Permeable Fe2O3-Ce0.9Gd0.1O2-δ Dual Phase Membranes. Industrial & Engineering Chemistry Research, 50(23), 13508-13517. doi:10.1021/ie200517t es_ES
dc.description.references Luo, H., Efimov, K., Jiang, H., Feldhoff, A., Wang, H., & Caro, J. (2010). CO2-Stable and Cobalt-Free Dual-Phase Membrane for Oxygen Separation. Angewandte Chemie International Edition, 50(3), 759-763. doi:10.1002/anie.201003723 es_ES
dc.description.references Balaguer, M., Solís, C., & Serra, J. M. (2011). Study of the Transport Properties of the Mixed Ionic Electronic Conductor Ce1−xTbxO2−δ + Co (x = 0.1, 0.2) and Evaluation As Oxygen-Transport Membrane. Chemistry of Materials, 23(9), 2333-2343. doi:10.1021/cm103581w es_ES
dc.description.references Dole, H. A. E., & Baranova, E. A. (2016). Ethylene Oxidation in an Oxygen-Deficient Environment: Why Ceria is an Active Support? ChemCatChem, 8(11), 1977-1986. doi:10.1002/cctc.201600142 es_ES
dc.description.references Lobera, M. P., Balaguer, M., Garcia-Fayos, J., & Serra, J. M. (2012). Rare Earth-doped Ceria Catalysts for ODHE Reaction in a Catalytic Modified MIEC Membrane Reactor. ChemCatChem, 4(12), 2102-2111. doi:10.1002/cctc.201200212 es_ES
dc.description.references Garcia-Fayos, J., Lobera, M. P., Balaguer, M., & Serra, J. M. (2018). Catalyst Screening for Oxidative Coupling of Methane Integrated in Membrane Reactors. Frontiers in Materials, 5. doi:10.3389/fmats.2018.00031 es_ES
dc.description.references Serra, J. M., Garcia-Fayos, J., Baumann, S., Schulze-Küppers, F., & Meulenberg, W. A. (2013). Oxygen permeation through tape-cast asymmetric all-La0.6Sr0.4Co0.2Fe0.8O3−δ membranes. Journal of Membrane Science, 447, 297-305. doi:10.1016/j.memsci.2013.07.030 es_ES
dc.description.references Balaguer, M., García-Fayos, J., Solís, C., & Serra, J. M. (2013). Fast Oxygen Separation Through SO2- and CO2-Stable Dual-Phase Membrane Based on NiFe2O4–Ce0.8Tb0.2O2-δ. Chemistry of Materials, 25(24), 4986-4993. doi:10.1021/cm4034963 es_ES
dc.description.references Garcia-Fayos, J., Balaguer, M., & Serra, J. M. (2015). Dual-Phase Oxygen Transport Membranes for Stable Operation in Environments Containing Carbon Dioxide and Sulfur Dioxide. ChemSusChem, 8(24), 4242-4249. doi:10.1002/cssc.201500951 es_ES
dc.description.references Shao, Z., Xiong, G., Dong, H., Yang, W., & Lin, L. (2001). Synthesis, oxygen permeation study and membrane performance of a Ba0.5Sr0.5Co0.8Fe0.2O3−δ oxygen-permeable dense ceramic reactor for partial oxidation of methane to syngas. Separation and Purification Technology, 25(1-3), 97-116. doi:10.1016/s1383-5866(01)00095-8 es_ES
dc.description.references Yan, A., Liu, B., Dong, Y., Tian, Z., Wang, D., & Cheng, M. (2008). A temperature programmed desorption investigation on the interaction of Ba0.5Sr0.5Co0.8Fe0.2O3−δ perovskite oxides with CO2 in the absence and presence of H2O and O2. Applied Catalysis B: Environmental, 80(1-2), 24-31. doi:10.1016/j.apcatb.2007.11.007 es_ES
dc.description.references Gaudillere, C., Garcia-Fayos, J., Balaguer, M., & Serra, J. M. (2014). Enhanced Oxygen Separation through Robust Freeze-Cast Bilayered Dual-Phase Membranes. ChemSusChem, 7(9), 2554-2561. doi:10.1002/cssc.201402324 es_ES
dc.description.references Weber, W. H., Hass, K. C., & McBride, J. R. (1993). Raman study ofCeO2: Second-order scattering, lattice dynamics, and particle-size effects. Physical Review B, 48(1), 178-185. doi:10.1103/physrevb.48.178 es_ES
dc.description.references Wang, S., Wang, W., Zuo, J., & Qian, Y. (2001). Study of the Raman spectrum of CeO2 nanometer thin films. Materials Chemistry and Physics, 68(1-3), 246-248. doi:10.1016/s0254-0584(00)00357-6 es_ES
dc.description.references Guo, M., Lu, J., Wu, Y., Wang, Y., & Luo, M. (2011). UV and Visible Raman Studies of Oxygen Vacancies in Rare-Earth-Doped Ceria. Langmuir, 27(7), 3872-3877. doi:10.1021/la200292f es_ES
dc.description.references Meng, L., Jia, A.-P., Lu, J.-Q., Luo, L.-F., Huang, W.-X., & Luo, M.-F. (2011). Synergetic Effects of PdO Species on CO Oxidation over PdO–CeO2 Catalysts. The Journal of Physical Chemistry C, 115(40), 19789-19796. doi:10.1021/jp2056688 es_ES
dc.description.references Yacou, C., Sunarso, J., Lin, C. X. C., Smart, S., Liu, S., & Diniz da Costa, J. C. (2011). Palladium surface modified La0.6Sr0.4Co0.2Fe0.8O3−δ hollow fibres for oxygen separation. Journal of Membrane Science, 380(1-2), 223-231. doi:10.1016/j.memsci.2011.07.008 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem