OECD, Electricity Generation, OECD Publishing.
I.E. Agency, CO2 Emissions from Fuel Combustion 2012, OECD Publishing.
Yörük, C. R., Trikkel, A., & Kuusik, R. (2016). Prediction of Flue Gas Composition and Comparative Overall Process Evaluation for Air and Oxyfuel Combustion of Estonian Oil Shale, Using Aspen Plus Process Simulation. Energy & Fuels, 30(7), 5893-5900. doi:10.1021/acs.energyfuels.6b00022
[+]
OECD, Electricity Generation, OECD Publishing.
I.E. Agency, CO2 Emissions from Fuel Combustion 2012, OECD Publishing.
Yörük, C. R., Trikkel, A., & Kuusik, R. (2016). Prediction of Flue Gas Composition and Comparative Overall Process Evaluation for Air and Oxyfuel Combustion of Estonian Oil Shale, Using Aspen Plus Process Simulation. Energy & Fuels, 30(7), 5893-5900. doi:10.1021/acs.energyfuels.6b00022
Perrin, N., Dubettier, R., Lockwood, F., Tranier, J.-P., Bourhy-Weber, C., & Terrien, P. (2015). Oxycombustion for coal power plants: Advantages, solutions and projects. Applied Thermal Engineering, 74, 75-82. doi:10.1016/j.applthermaleng.2014.03.074
ARNOLD, M., WANG, H., & FELDHOFF, A. (2007). Influence of CO2 on the oxygen permeation performance and the microstructure of perovskite-type (Ba0.5Sr0.5)(Co0.8Fe0.2)O3−δ membranes. Journal of Membrane Science, 293(1-2), 44-52. doi:10.1016/j.memsci.2007.01.032
Waindich, A., Möbius, A., & Müller, M. (2009). Corrosion of Ba1−xSrxCo1−yFeyO3−δ and La0.3Ba0.7Co0.2Fe0.8O3−δ materials for oxygen separating membranes under Oxycoal conditions. Journal of Membrane Science, 337(1-2), 182-187. doi:10.1016/j.memsci.2009.03.041
Kaiser, A., Foghmoes, S., Chatzichristodoulou, C., Søgaard, M., Glasscock, J. A., Frandsen, H. L., & Hendriksen, P. V. (2011). Evaluation of thin film ceria membranes for syngas membrane reactors—Preparation, characterization and testing. Journal of Membrane Science, 378(1-2), 51-60. doi:10.1016/j.memsci.2010.12.012
Lobera, M. P., Serra, J. M., Foghmoes, S. P., Søgaard, M., & Kaiser, A. (2011). On the use of supported ceria membranes for oxyfuel process/syngas production. Journal of Membrane Science, 385-386, 154-161. doi:10.1016/j.memsci.2011.09.031
Park, H. J., & Choi, G. M. (2004). Oxygen permeability of gadolinium-doped ceria at high temperature. Journal of the European Ceramic Society, 24(6), 1313-1317. doi:10.1016/s0955-2219(03)00555-7
Kharton, V. (2003). Oxygen transport in Ce0.8Gd0.2O2−δ-based composite membranes. Solid State Ionics, 160(3-4), 247-258. doi:10.1016/s0167-2738(03)00183-8
Kagomiya, I., Iijima, T., & Takamura, H. (2006). Oxygen permeability of nanocrystalline Ce0.8Gd0.2O1.9–CoFe2O4 mixed-conductive films. Journal of Membrane Science, 286(1-2), 180-184. doi:10.1016/j.memsci.2006.09.032
Wang, B., Yi, J., Winnubst, L., & Chen, C. (2006). Stability and oxygen permeation behavior of Ce0.8Sm0.2O2−δ–La0.8Sr0.2CrO3−δ composite membrane under large oxygen partial pressure gradients. Journal of Membrane Science, 286(1-2), 22-25. doi:10.1016/j.memsci.2006.06.009
Yoon, J. S., Yoon, M. Y., Lee, E. J., Moon, J.-W., & Hwang, H. J. (2010). Influence of Ce0.9Gd0.1O2−δ particles on microstructure and oxygen permeability of Ba0.5Sr0.5Co0.8Fe0.2O3−δ composite membrane. Solid State Ionics, 181(29-30), 1387-1393. doi:10.1016/j.ssi.2010.06.056
Choi, M.-B., Jeon, S.-Y., Hwang, H.-J., Park, J.-Y., & Song, S.-J. (2010). Composite of Ce0.8Gd0.2O2−δ and GdBaCo2O5+δ as oxygen separation membranes. Solid State Ionics, 181(37-38), 1680-1684. doi:10.1016/j.ssi.2010.09.027
Luo, H., Jiang, H., Efimov, K., Liang, F., Wang, H., & Caro, J. (2011). CO2-Tolerant Oxygen-Permeable Fe2O3-Ce0.9Gd0.1O2-δ Dual Phase Membranes. Industrial & Engineering Chemistry Research, 50(23), 13508-13517. doi:10.1021/ie200517t
Luo, H., Efimov, K., Jiang, H., Feldhoff, A., Wang, H., & Caro, J. (2010). CO2-Stable and Cobalt-Free Dual-Phase Membrane for Oxygen Separation. Angewandte Chemie International Edition, 50(3), 759-763. doi:10.1002/anie.201003723
Balaguer, M., Solís, C., & Serra, J. M. (2011). Study of the Transport Properties of the Mixed Ionic Electronic Conductor Ce1−xTbxO2−δ + Co (x = 0.1, 0.2) and Evaluation As Oxygen-Transport Membrane. Chemistry of Materials, 23(9), 2333-2343. doi:10.1021/cm103581w
Dole, H. A. E., & Baranova, E. A. (2016). Ethylene Oxidation in an Oxygen-Deficient Environment: Why Ceria is an Active Support? ChemCatChem, 8(11), 1977-1986. doi:10.1002/cctc.201600142
Lobera, M. P., Balaguer, M., Garcia-Fayos, J., & Serra, J. M. (2012). Rare Earth-doped Ceria Catalysts for ODHE Reaction in a Catalytic Modified MIEC Membrane Reactor. ChemCatChem, 4(12), 2102-2111. doi:10.1002/cctc.201200212
Garcia-Fayos, J., Lobera, M. P., Balaguer, M., & Serra, J. M. (2018). Catalyst Screening for Oxidative Coupling of Methane Integrated in Membrane Reactors. Frontiers in Materials, 5. doi:10.3389/fmats.2018.00031
Serra, J. M., Garcia-Fayos, J., Baumann, S., Schulze-Küppers, F., & Meulenberg, W. A. (2013). Oxygen permeation through tape-cast asymmetric all-La0.6Sr0.4Co0.2Fe0.8O3−δ membranes. Journal of Membrane Science, 447, 297-305. doi:10.1016/j.memsci.2013.07.030
Balaguer, M., García-Fayos, J., Solís, C., & Serra, J. M. (2013). Fast Oxygen Separation Through SO2- and CO2-Stable Dual-Phase Membrane Based on NiFe2O4–Ce0.8Tb0.2O2-δ. Chemistry of Materials, 25(24), 4986-4993. doi:10.1021/cm4034963
Garcia-Fayos, J., Balaguer, M., & Serra, J. M. (2015). Dual-Phase Oxygen Transport Membranes for Stable Operation in Environments Containing Carbon Dioxide and Sulfur Dioxide. ChemSusChem, 8(24), 4242-4249. doi:10.1002/cssc.201500951
Shao, Z., Xiong, G., Dong, H., Yang, W., & Lin, L. (2001). Synthesis, oxygen permeation study and membrane performance of a Ba0.5Sr0.5Co0.8Fe0.2O3−δ oxygen-permeable dense ceramic reactor for partial oxidation of methane to syngas. Separation and Purification Technology, 25(1-3), 97-116. doi:10.1016/s1383-5866(01)00095-8
Yan, A., Liu, B., Dong, Y., Tian, Z., Wang, D., & Cheng, M. (2008). A temperature programmed desorption investigation on the interaction of Ba0.5Sr0.5Co0.8Fe0.2O3−δ perovskite oxides with CO2 in the absence and presence of H2O and O2. Applied Catalysis B: Environmental, 80(1-2), 24-31. doi:10.1016/j.apcatb.2007.11.007
Gaudillere, C., Garcia-Fayos, J., Balaguer, M., & Serra, J. M. (2014). Enhanced Oxygen Separation through Robust Freeze-Cast Bilayered Dual-Phase Membranes. ChemSusChem, 7(9), 2554-2561. doi:10.1002/cssc.201402324
Weber, W. H., Hass, K. C., & McBride, J. R. (1993). Raman study ofCeO2: Second-order scattering, lattice dynamics, and particle-size effects. Physical Review B, 48(1), 178-185. doi:10.1103/physrevb.48.178
Wang, S., Wang, W., Zuo, J., & Qian, Y. (2001). Study of the Raman spectrum of CeO2 nanometer thin films. Materials Chemistry and Physics, 68(1-3), 246-248. doi:10.1016/s0254-0584(00)00357-6
Guo, M., Lu, J., Wu, Y., Wang, Y., & Luo, M. (2011). UV and Visible Raman Studies of Oxygen Vacancies in Rare-Earth-Doped Ceria. Langmuir, 27(7), 3872-3877. doi:10.1021/la200292f
Meng, L., Jia, A.-P., Lu, J.-Q., Luo, L.-F., Huang, W.-X., & Luo, M.-F. (2011). Synergetic Effects of PdO Species on CO Oxidation over PdO–CeO2 Catalysts. The Journal of Physical Chemistry C, 115(40), 19789-19796. doi:10.1021/jp2056688
Yacou, C., Sunarso, J., Lin, C. X. C., Smart, S., Liu, S., & Diniz da Costa, J. C. (2011). Palladium surface modified La0.6Sr0.4Co0.2Fe0.8O3−δ hollow fibres for oxygen separation. Journal of Membrane Science, 380(1-2), 223-231. doi:10.1016/j.memsci.2011.07.008
[-]