- -

Fibrillatory conduction in a simulated two-dimensional model of human atrial tissue: effect of the interaction of two ectopic foci

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Fibrillatory conduction in a simulated two-dimensional model of human atrial tissue: effect of the interaction of two ectopic foci

Mostrar el registro completo del ítem

Tobón, C.; Saiz Rodríguez, FJ. (2019). Fibrillatory conduction in a simulated two-dimensional model of human atrial tissue: effect of the interaction of two ectopic foci. Transactions of the Society for Computer Simulation. 95(7):577-591. https://doi.org/10.1177/0037549718782401

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/160614

Ficheros en el ítem

Metadatos del ítem

Título: Fibrillatory conduction in a simulated two-dimensional model of human atrial tissue: effect of the interaction of two ectopic foci
Autor: Tobón, Catalina Saiz Rodríguez, Francisco Javier
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Fecha difusión:
Resumen:
[EN] Atrial fibrillation (AF) is the most common tachyarrhythmia. It has been demonstrated that extra-stimuli could act as triggers for AF. In many patients it is possible that multiple ectopic foci co-exist, and their ...[+]
Palabras clave: Two-dimensional atrial model , Fibrillatory conduction , Ectopic activity
Derechos de uso: Reserva de todos los derechos
Fuente:
Transactions of the Society for Computer Simulation. (issn: 0740-6797 )
DOI: 10.1177/0037549718782401
Editorial:
SAGE Publications
Versión del editor: https://doi.org/10.1177/0037549718782401
Código del Proyecto:
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F088/ES/MODELOS COMPUTACIONALES PERSONALIZADOS MULTI-ESCALA PARA LA OPTIMIZACION DEL DIAGNOSTICO Y TRATAMIENTO DE ARRITMIAS CARDIACAS (PERSONALISED DIGITAL HEART)/
Agradecimientos:
This work was partially supported by the Direccion General de Politica Cientifica de la Generalitat Valenciana (PROMETEU 2016/088) and the University of Medellin
Tipo: Artículo

References

Fuster, V., Rydén, L. E., Cannom, D. S., Crijns, H. J., Curtis, A. B., … Ellenbogen, K. A. (2006). ACC/AHA/ESC 2006 Guidelines for the Management of Patients With Atrial Fibrillation—Executive Summary. Circulation, 114(7), 700-752. doi:10.1161/circulationaha.106.177031

Stewart, S., Hart, C. L., Hole, D. J., & McMurray, J. J. . (2002). A population-based study of the long-term risks associated with atrial fibrillation: 20-year follow-up of the Renfrew/Paisley study. The American Journal of Medicine, 113(5), 359-364. doi:10.1016/s0002-9343(02)01236-6

Wolf, P. A., Abbott, R. D., & Kannel, W. B. (1991). Atrial fibrillation as an independent risk factor for stroke: the Framingham Study. Stroke, 22(8), 983-988. doi:10.1161/01.str.22.8.983 [+]
Fuster, V., Rydén, L. E., Cannom, D. S., Crijns, H. J., Curtis, A. B., … Ellenbogen, K. A. (2006). ACC/AHA/ESC 2006 Guidelines for the Management of Patients With Atrial Fibrillation—Executive Summary. Circulation, 114(7), 700-752. doi:10.1161/circulationaha.106.177031

Stewart, S., Hart, C. L., Hole, D. J., & McMurray, J. J. . (2002). A population-based study of the long-term risks associated with atrial fibrillation: 20-year follow-up of the Renfrew/Paisley study. The American Journal of Medicine, 113(5), 359-364. doi:10.1016/s0002-9343(02)01236-6

Wolf, P. A., Abbott, R. D., & Kannel, W. B. (1991). Atrial fibrillation as an independent risk factor for stroke: the Framingham Study. Stroke, 22(8), 983-988. doi:10.1161/01.str.22.8.983

Krahn, A. D., Manfreda, J., Tate, R. B., Mathewson, F. A. L., & Cuddy, T. E. (1995). The natural history of atrial fibrillation: Incidence, risk factors, and prognosis in the manitoba follow-up study. The American Journal of Medicine, 98(5), 476-484. doi:10.1016/s0002-9343(99)80348-9

Zoni-Berisso, M., Lercari, F., Carazza, T., & Domenicucci, S. (2014). Epidemiology of atrial fibrillation: European perspective. Clinical Epidemiology, 213. doi:10.2147/clep.s47385

Corradi, D. (2014). Atrial fibrillation from the pathologist’s perspective. Cardiovascular Pathology, 23(2), 71-84. doi:10.1016/j.carpath.2013.12.001

Kishore, A., Vail, A., Majid, A., Dawson, J., Lees, K. R., Tyrrell, P. J., & Smith, C. J. (2014). Detection of Atrial Fibrillation After Ischemic Stroke or Transient Ischemic Attack. Stroke, 45(2), 520-526. doi:10.1161/strokeaha.113.003433

Knecht, S., Oelschlager, C., Duning, T., Lohmann, H., Albers, J., Stehling, C., … Wersching, H. (2008). Atrial fibrillation in stroke-free patients is associated with memory impairment and hippocampal atrophy. European Heart Journal, 29(17), 2125-2132. doi:10.1093/eurheartj/ehn341

Thrall, G., Lane, D., Carroll, D., & Lip, G. Y. H. (2006). Quality of Life in Patients with Atrial Fibrillation: A Systematic Review. The American Journal of Medicine, 119(5), 448.e1-448.e19. doi:10.1016/j.amjmed.2005.10.057

Steinberg, B. A., Kim, S., Fonarow, G. C., Thomas, L., Ansell, J., Kowey, P. R., … Piccini, J. P. (2014). Drivers of hospitalization for patients with atrial fibrillation: Results from the Outcomes Registry for Better Informed Treatment of Atrial Fibrillation (ORBIT-AF). American Heart Journal, 167(5), 735-742.e2. doi:10.1016/j.ahj.2014.02.003

Kirchhof, P., Benussi, S., Kotecha, D., Ahlsson, A., Atar, D., Casadei, B., … Zeppenfeld, K. (2016). 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Europace, 18(11), 1609-1678. doi:10.1093/europace/euw295

Haïssaguerre, M., Jaïs, P., Shah, D. C., Takahashi, A., Hocini, M., Quiniou, G., … Clémenty, J. (1998). Spontaneous Initiation of Atrial Fibrillation by Ectopic Beats Originating in the Pulmonary Veins. New England Journal of Medicine, 339(10), 659-666. doi:10.1056/nejm199809033391003

Chen, S.-A., Hsieh, M.-H., Tai, C.-T., Tsai, C.-F., Prakash, V. S., Yu, W.-C., … Chang, M.-S. (1999). Initiation of Atrial Fibrillation by Ectopic Beats Originating From the Pulmonary Veins. Circulation, 100(18), 1879-1886. doi:10.1161/01.cir.100.18.1879

Chen, Y. (2000). Arrhythmogenic activity of cardiac muscle in pulmonary veins of the dog: implication for the genesis of atrial fibrillation. Cardiovascular Research, 48(2), 265-273. doi:10.1016/s0008-6363(00)00179-6

Nattel, S., Burstein, B., & Dobrev, D. (2008). Atrial Remodeling and Atrial Fibrillation. Circulation: Arrhythmia and Electrophysiology, 1(1), 62-73. doi:10.1161/circep.107.754564

De Vos, C. B., Pisters, R., Nieuwlaat, R., Prins, M. H., Tieleman, R. G., Coelen, R.-J. S., … Crijns, H. J. G. M. (2010). Progression From Paroxysmal to Persistent Atrial Fibrillation. Journal of the American College of Cardiology, 55(8), 725-731. doi:10.1016/j.jacc.2009.11.040

DE GROOT, N. M. S., & SCHALIJ, M. J. (2006). Fragmented, Long-Duration, Low-Amplitude Electrograms Characterize the Origin of Focal Atrial Tachycardia. Journal of Cardiovascular Electrophysiology, 17(10), 1086-1092. doi:10.1111/j.1540-8167.2006.00568.x

Pison, L., Tilz, R., Jalife, J., & Haïssaguerre, M. (2016). Pulmonary vein triggers, focal sources, rotors and atrial cardiomyopathy: implications for the choice of the most effective ablation therapy. Journal of Internal Medicine, 279(5), 449-456. doi:10.1111/joim.12490

Sanders, P., Berenfeld, O., Hocini, M., Jaïs, P., Vaidyanathan, R., Hsu, L.-F., … Haïssaguerre, M. (2005). Spectral Analysis Identifies Sites of High-Frequency Activity Maintaining Atrial Fibrillation in Humans. Circulation, 112(6), 789-797. doi:10.1161/circulationaha.104.517011

Hansen, B. J., Zhao, J., Csepe, T. A., Moore, B. T., Li, N., Jayne, L. A., … Fedorov, V. V. (2015). Atrial fibrillation driven by micro-anatomic intramural re-entry revealed by simultaneous sub-epicardial and sub-endocardial optical mapping in explanted human hearts. European Heart Journal, 36(35), 2390-2401. doi:10.1093/eurheartj/ehv233

Narayan, S. M., Krummen, D. E., Shivkumar, K., Clopton, P., Rappel, W.-J., & Miller, J. M. (2012). Treatment of Atrial Fibrillation by the Ablation of Localized Sources. Journal of the American College of Cardiology, 60(7), 628-636. doi:10.1016/j.jacc.2012.05.022

Mandapati, R., Skanes, A., Chen, J., Berenfeld, O., & Jalife, J. (2000). Stable Microreentrant Sources as a Mechanism of Atrial Fibrillation in the Isolated Sheep Heart. Circulation, 101(2), 194-199. doi:10.1161/01.cir.101.2.194

Mansour, M., Mandapati, R., Berenfeld, O., Chen, J., Samie, F. H., & Jalife, J. (2001). Left-to-Right Gradient of Atrial Frequencies During Acute Atrial Fibrillation in the Isolated Sheep Heart. Circulation, 103(21), 2631-2636. doi:10.1161/01.cir.103.21.2631

Jalife, J. (2003). Rotors and Spiral Waves in Atrial Fibrillation. Journal of Cardiovascular Electrophysiology, 14(7), 776-780. doi:10.1046/j.1540-8167.2003.03136.x

Reumann, M., Bohnert, J., Osswald, B., Hagl, S., & Doessel, O. (2007). Multiple wavelets, rotors, and snakes in atrial fibrillation—a computer simulation study. Journal of Electrocardiology, 40(4), 328-334. doi:10.1016/j.jelectrocard.2006.12.016

Ugarte, J. P., Orozco-Duque, A., Tobón, C., Kremen, V., Novak, D., Saiz, J., … Bustamante, J. (2014). Dynamic Approximate Entropy Electroanatomic Maps Detect Rotors in a Simulated Atrial Fibrillation Model. PLoS ONE, 9(12), e114577. doi:10.1371/journal.pone.0114577

Arora, R., Verheule, S., Scott, L., Navarrete, A., Katari, V., Wilson, E., … Olgin, J. E. (2003). Arrhythmogenic Substrate of the Pulmonary Veins Assessed by High-Resolution Optical Mapping. Circulation, 107(13), 1816-1821. doi:10.1161/01.cir.0000058461.86339.7e

Kumagai, K., Gondo, N., Matsumoto, N., Noguchi, H., Tojo, H., Yasuda, T., … Saku, K. (2000). New Technique for Simultaneous Catheter Mapping of Pulmonary Veins for Catheter Ablation in Focal Atrial Fibrillation. Cardiology, 94(4), 233-238. doi:10.1159/000047323

Nanthakumar, K., Lau, Y. R., Plumb, V. J., Epstein, A. E., & Kay, G. N. (2004). Electrophysiological Findings in Adolescents With Atrial Fibrillation Who Have Structurally Normal Hearts. Circulation, 110(2), 117-123. doi:10.1161/01.cir.0000134280.40573.d8

Lin, W.-S., Tai, C.-T., Hsieh, M.-H., Tsai, C.-F., Lin, Y.-K., Tsao, H.-M., … Chen, S.-A. (2003). Catheter Ablation of Paroxysmal Atrial Fibrillation Initiated by Non–Pulmonary Vein Ectopy. Circulation, 107(25), 3176-3183. doi:10.1161/01.cir.0000074206.52056.2d

Bosch, R. (1999). Ionic mechanisms of electrical remodeling in human atrial fibrillation. Cardiovascular Research, 44(1), 121-131. doi:10.1016/s0008-6363(99)00178-9

Workman, A. (2001). The contribution of ionic currents to changes in refractoriness of human atrial myocytes associated with chronic atrial fibrillation. Cardiovascular Research, 52(2), 226-235. doi:10.1016/s0008-6363(01)00380-7

Wijffels, M. C. E. F., Kirchhof, C. J. H. J., Dorland, R., & Allessie, M. A. (1995). Atrial Fibrillation Begets Atrial Fibrillation. Circulation, 92(7), 1954-1968. doi:10.1161/01.cir.92.7.1954

Schotten, U., Verheule, S., Kirchhof, P., & Goette, A. (2011). Pathophysiological Mechanisms of Atrial Fibrillation: A Translational Appraisal. Physiological Reviews, 91(1), 265-325. doi:10.1152/physrev.00031.2009

Veenhuyzen, G. D. (2004). Atrial fibrillation. Canadian Medical Association Journal, 171(7), 755-760. doi:10.1503/cmaj.1031364

Weiss, J. N., Qu, Z., & Shivkumar, K. (2016). Ablating atrial fibrillation: A translational science perspective for clinicians. Heart Rhythm, 13(9), 1868-1877. doi:10.1016/j.hrthm.2016.05.026

Jai¨s, P., Hai¨ssaguerre, M., Shah, D. C., Chouairi, S., Gencel, L., Hocini, M., & Cle´menty, J. (1997). A Focal Source of Atrial Fibrillation Treated by Discrete Radiofrequency Ablation. Circulation, 95(3), 572-576. doi:10.1161/01.cir.95.3.572

BELHASSEN, B., GLICK, A., & VISKIN, S. (2004). Reentry in a Pulmonary Vein as a Possible Mechanism of Focal Atrial Fibrillation. Journal of Cardiovascular Electrophysiology, 15(7), 824-828. doi:10.1046/j.1540-8167.2004.03453.x

Wilders, R., Wagner, M. B., Golod, D. A., Kumar, R., Wang, Y.-G., Goolsby, W. N., … Jongsma, H. J. (2000). Effects of anisotropy on the development of cardiac arrhythmias associated with focal activity. Pfl�gers Archiv European Journal of Physiology, 441(2-3), 301-312. doi:10.1007/s004240000413

Zhao, J., Butters, T. D., Zhang, H., Pullan, A. J., LeGrice, I. J., Sands, G. B., & Smaill, B. H. (2012). An Image-Based Model of Atrial Muscular Architecture. Circulation: Arrhythmia and Electrophysiology, 5(2), 361-370. doi:10.1161/circep.111.967950

Aslanidi, O. V., Boyett, M. R., Dobrzynski, H., Li, J., & Zhang, H. (2009). Mechanisms of Transition from Normal to Reentrant Electrical Activity in a Model of Rabbit Atrial Tissue: Interaction of Tissue Heterogeneity and Anisotropy. Biophysical Journal, 96(3), 798-817. doi:10.1016/j.bpj.2008.09.057

Nygren, A., Fiset, C., Firek, L., Clark, J. W., Lindblad, D. S., Clark, R. B., & Giles, W. R. (1998). Mathematical Model of an Adult Human Atrial Cell. Circulation Research, 82(1), 63-81. doi:10.1161/01.res.82.1.63

YEN HO, S., SANCHEZ-QUINTANA, D., CABRERA, J. A., & ANDERSON, R. H. (1999). Anatomy of the Left Atrium:. Journal of Cardiovascular Electrophysiology, 10(11), 1525-1533. doi:10.1111/j.1540-8167.1999.tb00211.x

Tobón, C., Orozco‐Duque, A., Ugarte, J. P., Becerra, M., & Saiz, J. (2017). Complexity of Atrial Fibrillation Electrograms Through Nonlinear Signal Analysis: In Silico Approach. Interpreting Cardiac Electrograms - From Skin to Endocardium. doi:10.5772/intechopen.69475

TAKAHASHI, Y., SANDERS, P., JAIS, P., HOCINI, M., DUBOIS, R., ROTTER, M., … HAISSAGUERRE, M. (2006). Organization of Frequency Spectra of Atrial Fibrillation: Relevance to Radiofrequency Catheter Ablation. Journal of Cardiovascular Electrophysiology, 17(4), 382-388. doi:10.1111/j.1540-8167.2005.00414.x

Tobón, C., Rodríguez, J. F., Ferrero, J. M., Hornero, F., & Saiz, J. (2012). Dominant frequency and organization index maps in a realistic three-dimensional computational model of atrial fibrillation. EP Europace, 14(suppl_5), v25-v32. doi:10.1093/europace/eus268

Everett, T. H., Wilson, E. E., Verheule, S., Guerra, J. M., Foreman, S., & Olgin, J. E. (2006). Structural atrial remodeling alters the substrate and spatiotemporal organization of atrial fibrillation: a comparison in canine models of structural and electrical atrial remodeling. American Journal of Physiology-Heart and Circulatory Physiology, 291(6), H2911-H2923. doi:10.1152/ajpheart.01128.2005

Jaïs, P., Hocini, M., Macle, L., Choi, K.-J., Deisenhofer, I., Weerasooriya, R., … Haïssaguerre, M. (2002). Distinctive Electrophysiological Properties of Pulmonary Veins in Patients With Atrial Fibrillation. Circulation, 106(19), 2479-2485. doi:10.1161/01.cir.0000036744.39782.9f

Ikeda, T., Yashima, M., Uchida, T., Hough, D., Fishbein, M. C., Mandel, W. J., … Karagueuzian, H. S. (1997). Attachment of Meandering Reentrant Wave Fronts to Anatomic Obstacles in the Atrium. Circulation Research, 81(5), 753-764. doi:10.1161/01.res.81.5.753

Wieser, L., Nowak, C. N., Tilg, B., & Fischer, G. (2008). Mother rotor anchoring in branching tissue with heterogeneous membrane properties / Ankern von mother rotors in verzweigtem Gewebe mit inhomogenen Membraneigenschaften. Biomedizinische Technik/Biomedical Engineering, 53(1), 25-35. doi:10.1515/bmt.2008.004

Uno, K., Kumagai, K., Khrestian, C. M., & Waldo, A. L. (1999). New Insights Regarding the Atrial Flutter Reentrant Circuit. Circulation, 100(12), 1354-1360. doi:10.1161/01.cir.100.12.1354

Vigmond, E. J., Tsoi, V., Kuo, S., Arevalo, H., Kneller, J., Nattel, S., & Trayanova, N. (2004). The effect of vagally induced dispersion of action potential duration on atrial arrhythmogenesis. Heart Rhythm, 1(3), 334-344. doi:10.1016/j.hrthm.2004.03.077

Borek, B., Shajahan, T. K., Gabriels, J., Hodge, A., Glass, L., & Shrier, A. (2012). Pacemaker interactions induce reentrant wave dynamics in engineered cardiac culture. Chaos: An Interdisciplinary Journal of Nonlinear Science, 22(3), 033132. doi:10.1063/1.4747709

Gong, Y., Xie, F., Stein, K. M., Garfinkel, A., Culianu, C. A., Lerman, B. B., & Christini, D. J. (2007). Mechanism Underlying Initiation of Paroxysmal Atrial Flutter/Atrial Fibrillation by Ectopic Foci. Circulation, 115(16), 2094-2102. doi:10.1161/circulationaha.106.656504

Konings, K. T. S., Smeets, J. L. R. M., Penn, O. C., Wellens, H. J. J., & Allessie, M. A. (1997). Configuration of Unipolar Atrial Electrograms During Electrically Induced Atrial Fibrillation in Humans. Circulation, 95(5), 1231-1241. doi:10.1161/01.cir.95.5.1231

RYU, K., SAHADEVAN, J., KHRESTIAN, C. M., STAMBLER, B. S., & WALDO, A. L. (2006). Use of Fast Fourier Transform Analysis of Atrial Electrograms for Rapid Characterization of Atrial Activation-Implications for Delineating Possible Mechanisms of Atrial Tachyarrhythmias. Journal of Cardiovascular Electrophysiology, 17(2), 198-206. doi:10.1111/j.1540-8167.2005.00320.x

Skanes, A. C., Mandapati, R., Berenfeld, O., Davidenko, J. M., & Jalife, J. (1998). Spatiotemporal Periodicity During Atrial Fibrillation in the Isolated Sheep Heart. Circulation, 98(12), 1236-1248. doi:10.1161/01.cir.98.12.1236

Haïssaguerre, M., Sanders, P., Hocini, M., Jaïs, P., & Clémenty, J. (2004). Pulmonary veins in the substrate for atrial fibrillation. Journal of the American College of Cardiology, 43(12), 2290-2292. doi:10.1016/j.jacc.2004.03.036

LIN, L.-J., BILLETTE, J., KHALIFE, K., MARTEL, K., WANG, J., & MEDKOUR, D. (1999). Characteristics, Circuit, Mechanism, and Ablation of Reentry in the Rabbit Atrioventricular Node. Journal of Cardiovascular Electrophysiology, 10(7), 954-964. doi:10.1111/j.1540-8167.1999.tb01266.x

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem