Mostrar el registro sencillo del ítem
dc.contributor.author | Tobón, Catalina | es_ES |
dc.contributor.author | Saiz Rodríguez, Francisco Javier | es_ES |
dc.date.accessioned | 2021-02-03T04:34:19Z | |
dc.date.available | 2021-02-03T04:34:19Z | |
dc.date.issued | 2019-07 | es_ES |
dc.identifier.issn | 0740-6797 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/160614 | |
dc.description.abstract | [EN] Atrial fibrillation (AF) is the most common tachyarrhythmia. It has been demonstrated that extra-stimuli could act as triggers for AF. In many patients it is possible that multiple ectopic foci co-exist, and their interactions may generate complex conduction patterns. Our goal is to investigate the influence of the focus frequency, conduction velocity, and anisotropy on fibrillatory pattern generation during the interaction of multiple ectopic activities under electrical remodeling conditions. Our results support the broadly accepted theory that ectopic activity acting in remodeled tissue is an initiator of reentrant mechanisms. These reentrant circuits can generate fibrillatory activity when interacting with other rapid ectopic foci and under the following conditions: high ectopic focus frequency, slow conduction velocity, and anisotropic tissue. Analyses of electrogram polymorphism allow determination of which zones of tissue permit one to know in which zone of tissue unstable activity exists. Our results give useful insights into the electrophysiological parameters that determine the initiation and maintenance of fibrillatory conduction by two ectopic foci interaction in a simulated two-dimensional sheet of human atrial cells, under chronic AF conditions. | es_ES |
dc.description.sponsorship | This work was partially supported by the Direccion General de Politica Cientifica de la Generalitat Valenciana (PROMETEU 2016/088) and the University of Medellin | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | SAGE Publications | es_ES |
dc.relation.ispartof | Transactions of the Society for Computer Simulation | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Two-dimensional atrial model | es_ES |
dc.subject | Fibrillatory conduction | es_ES |
dc.subject | Ectopic activity | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Fibrillatory conduction in a simulated two-dimensional model of human atrial tissue: effect of the interaction of two ectopic foci | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1177/0037549718782401 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F088/ES/MODELOS COMPUTACIONALES PERSONALIZADOS MULTI-ESCALA PARA LA OPTIMIZACION DEL DIAGNOSTICO Y TRATAMIENTO DE ARRITMIAS CARDIACAS (PERSONALISED DIGITAL HEART)/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.description.bibliographicCitation | Tobón, C.; Saiz Rodríguez, FJ. (2019). Fibrillatory conduction in a simulated two-dimensional model of human atrial tissue: effect of the interaction of two ectopic foci. Transactions of the Society for Computer Simulation. 95(7):577-591. https://doi.org/10.1177/0037549718782401 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1177/0037549718782401 | es_ES |
dc.description.upvformatpinicio | 577 | es_ES |
dc.description.upvformatpfin | 591 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 95 | es_ES |
dc.description.issue | 7 | es_ES |
dc.relation.pasarela | S\386403 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.description.references | Fuster, V., Rydén, L. E., Cannom, D. S., Crijns, H. J., Curtis, A. B., … Ellenbogen, K. A. (2006). ACC/AHA/ESC 2006 Guidelines for the Management of Patients With Atrial Fibrillation—Executive Summary. Circulation, 114(7), 700-752. doi:10.1161/circulationaha.106.177031 | es_ES |
dc.description.references | Stewart, S., Hart, C. L., Hole, D. J., & McMurray, J. J. . (2002). A population-based study of the long-term risks associated with atrial fibrillation: 20-year follow-up of the Renfrew/Paisley study. The American Journal of Medicine, 113(5), 359-364. doi:10.1016/s0002-9343(02)01236-6 | es_ES |
dc.description.references | Wolf, P. A., Abbott, R. D., & Kannel, W. B. (1991). Atrial fibrillation as an independent risk factor for stroke: the Framingham Study. Stroke, 22(8), 983-988. doi:10.1161/01.str.22.8.983 | es_ES |
dc.description.references | Krahn, A. D., Manfreda, J., Tate, R. B., Mathewson, F. A. L., & Cuddy, T. E. (1995). The natural history of atrial fibrillation: Incidence, risk factors, and prognosis in the manitoba follow-up study. The American Journal of Medicine, 98(5), 476-484. doi:10.1016/s0002-9343(99)80348-9 | es_ES |
dc.description.references | Zoni-Berisso, M., Lercari, F., Carazza, T., & Domenicucci, S. (2014). Epidemiology of atrial fibrillation: European perspective. Clinical Epidemiology, 213. doi:10.2147/clep.s47385 | es_ES |
dc.description.references | Corradi, D. (2014). Atrial fibrillation from the pathologist’s perspective. Cardiovascular Pathology, 23(2), 71-84. doi:10.1016/j.carpath.2013.12.001 | es_ES |
dc.description.references | Kishore, A., Vail, A., Majid, A., Dawson, J., Lees, K. R., Tyrrell, P. J., & Smith, C. J. (2014). Detection of Atrial Fibrillation After Ischemic Stroke or Transient Ischemic Attack. Stroke, 45(2), 520-526. doi:10.1161/strokeaha.113.003433 | es_ES |
dc.description.references | Knecht, S., Oelschlager, C., Duning, T., Lohmann, H., Albers, J., Stehling, C., … Wersching, H. (2008). Atrial fibrillation in stroke-free patients is associated with memory impairment and hippocampal atrophy. European Heart Journal, 29(17), 2125-2132. doi:10.1093/eurheartj/ehn341 | es_ES |
dc.description.references | Thrall, G., Lane, D., Carroll, D., & Lip, G. Y. H. (2006). Quality of Life in Patients with Atrial Fibrillation: A Systematic Review. The American Journal of Medicine, 119(5), 448.e1-448.e19. doi:10.1016/j.amjmed.2005.10.057 | es_ES |
dc.description.references | Steinberg, B. A., Kim, S., Fonarow, G. C., Thomas, L., Ansell, J., Kowey, P. R., … Piccini, J. P. (2014). Drivers of hospitalization for patients with atrial fibrillation: Results from the Outcomes Registry for Better Informed Treatment of Atrial Fibrillation (ORBIT-AF). American Heart Journal, 167(5), 735-742.e2. doi:10.1016/j.ahj.2014.02.003 | es_ES |
dc.description.references | Kirchhof, P., Benussi, S., Kotecha, D., Ahlsson, A., Atar, D., Casadei, B., … Zeppenfeld, K. (2016). 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Europace, 18(11), 1609-1678. doi:10.1093/europace/euw295 | es_ES |
dc.description.references | Haïssaguerre, M., Jaïs, P., Shah, D. C., Takahashi, A., Hocini, M., Quiniou, G., … Clémenty, J. (1998). Spontaneous Initiation of Atrial Fibrillation by Ectopic Beats Originating in the Pulmonary Veins. New England Journal of Medicine, 339(10), 659-666. doi:10.1056/nejm199809033391003 | es_ES |
dc.description.references | Chen, S.-A., Hsieh, M.-H., Tai, C.-T., Tsai, C.-F., Prakash, V. S., Yu, W.-C., … Chang, M.-S. (1999). Initiation of Atrial Fibrillation by Ectopic Beats Originating From the Pulmonary Veins. Circulation, 100(18), 1879-1886. doi:10.1161/01.cir.100.18.1879 | es_ES |
dc.description.references | Chen, Y. (2000). Arrhythmogenic activity of cardiac muscle in pulmonary veins of the dog: implication for the genesis of atrial fibrillation. Cardiovascular Research, 48(2), 265-273. doi:10.1016/s0008-6363(00)00179-6 | es_ES |
dc.description.references | Nattel, S., Burstein, B., & Dobrev, D. (2008). Atrial Remodeling and Atrial Fibrillation. Circulation: Arrhythmia and Electrophysiology, 1(1), 62-73. doi:10.1161/circep.107.754564 | es_ES |
dc.description.references | De Vos, C. B., Pisters, R., Nieuwlaat, R., Prins, M. H., Tieleman, R. G., Coelen, R.-J. S., … Crijns, H. J. G. M. (2010). Progression From Paroxysmal to Persistent Atrial Fibrillation. Journal of the American College of Cardiology, 55(8), 725-731. doi:10.1016/j.jacc.2009.11.040 | es_ES |
dc.description.references | DE GROOT, N. M. S., & SCHALIJ, M. J. (2006). Fragmented, Long-Duration, Low-Amplitude Electrograms Characterize the Origin of Focal Atrial Tachycardia. Journal of Cardiovascular Electrophysiology, 17(10), 1086-1092. doi:10.1111/j.1540-8167.2006.00568.x | es_ES |
dc.description.references | Pison, L., Tilz, R., Jalife, J., & Haïssaguerre, M. (2016). Pulmonary vein triggers, focal sources, rotors and atrial cardiomyopathy: implications for the choice of the most effective ablation therapy. Journal of Internal Medicine, 279(5), 449-456. doi:10.1111/joim.12490 | es_ES |
dc.description.references | Sanders, P., Berenfeld, O., Hocini, M., Jaïs, P., Vaidyanathan, R., Hsu, L.-F., … Haïssaguerre, M. (2005). Spectral Analysis Identifies Sites of High-Frequency Activity Maintaining Atrial Fibrillation in Humans. Circulation, 112(6), 789-797. doi:10.1161/circulationaha.104.517011 | es_ES |
dc.description.references | Hansen, B. J., Zhao, J., Csepe, T. A., Moore, B. T., Li, N., Jayne, L. A., … Fedorov, V. V. (2015). Atrial fibrillation driven by micro-anatomic intramural re-entry revealed by simultaneous sub-epicardial and sub-endocardial optical mapping in explanted human hearts. European Heart Journal, 36(35), 2390-2401. doi:10.1093/eurheartj/ehv233 | es_ES |
dc.description.references | Narayan, S. M., Krummen, D. E., Shivkumar, K., Clopton, P., Rappel, W.-J., & Miller, J. M. (2012). Treatment of Atrial Fibrillation by the Ablation of Localized Sources. Journal of the American College of Cardiology, 60(7), 628-636. doi:10.1016/j.jacc.2012.05.022 | es_ES |
dc.description.references | Mandapati, R., Skanes, A., Chen, J., Berenfeld, O., & Jalife, J. (2000). Stable Microreentrant Sources as a Mechanism of Atrial Fibrillation in the Isolated Sheep Heart. Circulation, 101(2), 194-199. doi:10.1161/01.cir.101.2.194 | es_ES |
dc.description.references | Mansour, M., Mandapati, R., Berenfeld, O., Chen, J., Samie, F. H., & Jalife, J. (2001). Left-to-Right Gradient of Atrial Frequencies During Acute Atrial Fibrillation in the Isolated Sheep Heart. Circulation, 103(21), 2631-2636. doi:10.1161/01.cir.103.21.2631 | es_ES |
dc.description.references | Jalife, J. (2003). Rotors and Spiral Waves in Atrial Fibrillation. Journal of Cardiovascular Electrophysiology, 14(7), 776-780. doi:10.1046/j.1540-8167.2003.03136.x | es_ES |
dc.description.references | Reumann, M., Bohnert, J., Osswald, B., Hagl, S., & Doessel, O. (2007). Multiple wavelets, rotors, and snakes in atrial fibrillation—a computer simulation study. Journal of Electrocardiology, 40(4), 328-334. doi:10.1016/j.jelectrocard.2006.12.016 | es_ES |
dc.description.references | Ugarte, J. P., Orozco-Duque, A., Tobón, C., Kremen, V., Novak, D., Saiz, J., … Bustamante, J. (2014). Dynamic Approximate Entropy Electroanatomic Maps Detect Rotors in a Simulated Atrial Fibrillation Model. PLoS ONE, 9(12), e114577. doi:10.1371/journal.pone.0114577 | es_ES |
dc.description.references | Arora, R., Verheule, S., Scott, L., Navarrete, A., Katari, V., Wilson, E., … Olgin, J. E. (2003). Arrhythmogenic Substrate of the Pulmonary Veins Assessed by High-Resolution Optical Mapping. Circulation, 107(13), 1816-1821. doi:10.1161/01.cir.0000058461.86339.7e | es_ES |
dc.description.references | Kumagai, K., Gondo, N., Matsumoto, N., Noguchi, H., Tojo, H., Yasuda, T., … Saku, K. (2000). New Technique for Simultaneous Catheter Mapping of Pulmonary Veins for Catheter Ablation in Focal Atrial Fibrillation. Cardiology, 94(4), 233-238. doi:10.1159/000047323 | es_ES |
dc.description.references | Nanthakumar, K., Lau, Y. R., Plumb, V. J., Epstein, A. E., & Kay, G. N. (2004). Electrophysiological Findings in Adolescents With Atrial Fibrillation Who Have Structurally Normal Hearts. Circulation, 110(2), 117-123. doi:10.1161/01.cir.0000134280.40573.d8 | es_ES |
dc.description.references | Lin, W.-S., Tai, C.-T., Hsieh, M.-H., Tsai, C.-F., Lin, Y.-K., Tsao, H.-M., … Chen, S.-A. (2003). Catheter Ablation of Paroxysmal Atrial Fibrillation Initiated by Non–Pulmonary Vein Ectopy. Circulation, 107(25), 3176-3183. doi:10.1161/01.cir.0000074206.52056.2d | es_ES |
dc.description.references | Bosch, R. (1999). Ionic mechanisms of electrical remodeling in human atrial fibrillation. Cardiovascular Research, 44(1), 121-131. doi:10.1016/s0008-6363(99)00178-9 | es_ES |
dc.description.references | Workman, A. (2001). The contribution of ionic currents to changes in refractoriness of human atrial myocytes associated with chronic atrial fibrillation. Cardiovascular Research, 52(2), 226-235. doi:10.1016/s0008-6363(01)00380-7 | es_ES |
dc.description.references | Wijffels, M. C. E. F., Kirchhof, C. J. H. J., Dorland, R., & Allessie, M. A. (1995). Atrial Fibrillation Begets Atrial Fibrillation. Circulation, 92(7), 1954-1968. doi:10.1161/01.cir.92.7.1954 | es_ES |
dc.description.references | Schotten, U., Verheule, S., Kirchhof, P., & Goette, A. (2011). Pathophysiological Mechanisms of Atrial Fibrillation: A Translational Appraisal. Physiological Reviews, 91(1), 265-325. doi:10.1152/physrev.00031.2009 | es_ES |
dc.description.references | Veenhuyzen, G. D. (2004). Atrial fibrillation. Canadian Medical Association Journal, 171(7), 755-760. doi:10.1503/cmaj.1031364 | es_ES |
dc.description.references | Weiss, J. N., Qu, Z., & Shivkumar, K. (2016). Ablating atrial fibrillation: A translational science perspective for clinicians. Heart Rhythm, 13(9), 1868-1877. doi:10.1016/j.hrthm.2016.05.026 | es_ES |
dc.description.references | Jai¨s, P., Hai¨ssaguerre, M., Shah, D. C., Chouairi, S., Gencel, L., Hocini, M., & Cle´menty, J. (1997). A Focal Source of Atrial Fibrillation Treated by Discrete Radiofrequency Ablation. Circulation, 95(3), 572-576. doi:10.1161/01.cir.95.3.572 | es_ES |
dc.description.references | BELHASSEN, B., GLICK, A., & VISKIN, S. (2004). Reentry in a Pulmonary Vein as a Possible Mechanism of Focal Atrial Fibrillation. Journal of Cardiovascular Electrophysiology, 15(7), 824-828. doi:10.1046/j.1540-8167.2004.03453.x | es_ES |
dc.description.references | Wilders, R., Wagner, M. B., Golod, D. A., Kumar, R., Wang, Y.-G., Goolsby, W. N., … Jongsma, H. J. (2000). Effects of anisotropy on the development of cardiac arrhythmias associated with focal activity. Pfl�gers Archiv European Journal of Physiology, 441(2-3), 301-312. doi:10.1007/s004240000413 | es_ES |
dc.description.references | Zhao, J., Butters, T. D., Zhang, H., Pullan, A. J., LeGrice, I. J., Sands, G. B., & Smaill, B. H. (2012). An Image-Based Model of Atrial Muscular Architecture. Circulation: Arrhythmia and Electrophysiology, 5(2), 361-370. doi:10.1161/circep.111.967950 | es_ES |
dc.description.references | Aslanidi, O. V., Boyett, M. R., Dobrzynski, H., Li, J., & Zhang, H. (2009). Mechanisms of Transition from Normal to Reentrant Electrical Activity in a Model of Rabbit Atrial Tissue: Interaction of Tissue Heterogeneity and Anisotropy. Biophysical Journal, 96(3), 798-817. doi:10.1016/j.bpj.2008.09.057 | es_ES |
dc.description.references | Nygren, A., Fiset, C., Firek, L., Clark, J. W., Lindblad, D. S., Clark, R. B., & Giles, W. R. (1998). Mathematical Model of an Adult Human Atrial Cell. Circulation Research, 82(1), 63-81. doi:10.1161/01.res.82.1.63 | es_ES |
dc.description.references | YEN HO, S., SANCHEZ-QUINTANA, D., CABRERA, J. A., & ANDERSON, R. H. (1999). Anatomy of the Left Atrium:. Journal of Cardiovascular Electrophysiology, 10(11), 1525-1533. doi:10.1111/j.1540-8167.1999.tb00211.x | es_ES |
dc.description.references | Tobón, C., Orozco‐Duque, A., Ugarte, J. P., Becerra, M., & Saiz, J. (2017). Complexity of Atrial Fibrillation Electrograms Through Nonlinear Signal Analysis: In Silico Approach. Interpreting Cardiac Electrograms - From Skin to Endocardium. doi:10.5772/intechopen.69475 | es_ES |
dc.description.references | TAKAHASHI, Y., SANDERS, P., JAIS, P., HOCINI, M., DUBOIS, R., ROTTER, M., … HAISSAGUERRE, M. (2006). Organization of Frequency Spectra of Atrial Fibrillation: Relevance to Radiofrequency Catheter Ablation. Journal of Cardiovascular Electrophysiology, 17(4), 382-388. doi:10.1111/j.1540-8167.2005.00414.x | es_ES |
dc.description.references | Tobón, C., Rodríguez, J. F., Ferrero, J. M., Hornero, F., & Saiz, J. (2012). Dominant frequency and organization index maps in a realistic three-dimensional computational model of atrial fibrillation. EP Europace, 14(suppl_5), v25-v32. doi:10.1093/europace/eus268 | es_ES |
dc.description.references | Everett, T. H., Wilson, E. E., Verheule, S., Guerra, J. M., Foreman, S., & Olgin, J. E. (2006). Structural atrial remodeling alters the substrate and spatiotemporal organization of atrial fibrillation: a comparison in canine models of structural and electrical atrial remodeling. American Journal of Physiology-Heart and Circulatory Physiology, 291(6), H2911-H2923. doi:10.1152/ajpheart.01128.2005 | es_ES |
dc.description.references | Jaïs, P., Hocini, M., Macle, L., Choi, K.-J., Deisenhofer, I., Weerasooriya, R., … Haïssaguerre, M. (2002). Distinctive Electrophysiological Properties of Pulmonary Veins in Patients With Atrial Fibrillation. Circulation, 106(19), 2479-2485. doi:10.1161/01.cir.0000036744.39782.9f | es_ES |
dc.description.references | Ikeda, T., Yashima, M., Uchida, T., Hough, D., Fishbein, M. C., Mandel, W. J., … Karagueuzian, H. S. (1997). Attachment of Meandering Reentrant Wave Fronts to Anatomic Obstacles in the Atrium. Circulation Research, 81(5), 753-764. doi:10.1161/01.res.81.5.753 | es_ES |
dc.description.references | Wieser, L., Nowak, C. N., Tilg, B., & Fischer, G. (2008). Mother rotor anchoring in branching tissue with heterogeneous membrane properties / Ankern von mother rotors in verzweigtem Gewebe mit inhomogenen Membraneigenschaften. Biomedizinische Technik/Biomedical Engineering, 53(1), 25-35. doi:10.1515/bmt.2008.004 | es_ES |
dc.description.references | Uno, K., Kumagai, K., Khrestian, C. M., & Waldo, A. L. (1999). New Insights Regarding the Atrial Flutter Reentrant Circuit. Circulation, 100(12), 1354-1360. doi:10.1161/01.cir.100.12.1354 | es_ES |
dc.description.references | Vigmond, E. J., Tsoi, V., Kuo, S., Arevalo, H., Kneller, J., Nattel, S., & Trayanova, N. (2004). The effect of vagally induced dispersion of action potential duration on atrial arrhythmogenesis. Heart Rhythm, 1(3), 334-344. doi:10.1016/j.hrthm.2004.03.077 | es_ES |
dc.description.references | Borek, B., Shajahan, T. K., Gabriels, J., Hodge, A., Glass, L., & Shrier, A. (2012). Pacemaker interactions induce reentrant wave dynamics in engineered cardiac culture. Chaos: An Interdisciplinary Journal of Nonlinear Science, 22(3), 033132. doi:10.1063/1.4747709 | es_ES |
dc.description.references | Gong, Y., Xie, F., Stein, K. M., Garfinkel, A., Culianu, C. A., Lerman, B. B., & Christini, D. J. (2007). Mechanism Underlying Initiation of Paroxysmal Atrial Flutter/Atrial Fibrillation by Ectopic Foci. Circulation, 115(16), 2094-2102. doi:10.1161/circulationaha.106.656504 | es_ES |
dc.description.references | Konings, K. T. S., Smeets, J. L. R. M., Penn, O. C., Wellens, H. J. J., & Allessie, M. A. (1997). Configuration of Unipolar Atrial Electrograms During Electrically Induced Atrial Fibrillation in Humans. Circulation, 95(5), 1231-1241. doi:10.1161/01.cir.95.5.1231 | es_ES |
dc.description.references | RYU, K., SAHADEVAN, J., KHRESTIAN, C. M., STAMBLER, B. S., & WALDO, A. L. (2006). Use of Fast Fourier Transform Analysis of Atrial Electrograms for Rapid Characterization of Atrial Activation-Implications for Delineating Possible Mechanisms of Atrial Tachyarrhythmias. Journal of Cardiovascular Electrophysiology, 17(2), 198-206. doi:10.1111/j.1540-8167.2005.00320.x | es_ES |
dc.description.references | Skanes, A. C., Mandapati, R., Berenfeld, O., Davidenko, J. M., & Jalife, J. (1998). Spatiotemporal Periodicity During Atrial Fibrillation in the Isolated Sheep Heart. Circulation, 98(12), 1236-1248. doi:10.1161/01.cir.98.12.1236 | es_ES |
dc.description.references | Haïssaguerre, M., Sanders, P., Hocini, M., Jaïs, P., & Clémenty, J. (2004). Pulmonary veins in the substrate for atrial fibrillation. Journal of the American College of Cardiology, 43(12), 2290-2292. doi:10.1016/j.jacc.2004.03.036 | es_ES |
dc.description.references | LIN, L.-J., BILLETTE, J., KHALIFE, K., MARTEL, K., WANG, J., & MEDKOUR, D. (1999). Characteristics, Circuit, Mechanism, and Ablation of Reentry in the Rabbit Atrioventricular Node. Journal of Cardiovascular Electrophysiology, 10(7), 954-964. doi:10.1111/j.1540-8167.1999.tb01266.x | es_ES |