- -

Fibrillatory conduction in a simulated two-dimensional model of human atrial tissue: effect of the interaction of two ectopic foci

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Fibrillatory conduction in a simulated two-dimensional model of human atrial tissue: effect of the interaction of two ectopic foci

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Tobón, Catalina es_ES
dc.contributor.author Saiz Rodríguez, Francisco Javier es_ES
dc.date.accessioned 2021-02-03T04:34:19Z
dc.date.available 2021-02-03T04:34:19Z
dc.date.issued 2019-07 es_ES
dc.identifier.issn 0740-6797 es_ES
dc.identifier.uri http://hdl.handle.net/10251/160614
dc.description.abstract [EN] Atrial fibrillation (AF) is the most common tachyarrhythmia. It has been demonstrated that extra-stimuli could act as triggers for AF. In many patients it is possible that multiple ectopic foci co-exist, and their interactions may generate complex conduction patterns. Our goal is to investigate the influence of the focus frequency, conduction velocity, and anisotropy on fibrillatory pattern generation during the interaction of multiple ectopic activities under electrical remodeling conditions. Our results support the broadly accepted theory that ectopic activity acting in remodeled tissue is an initiator of reentrant mechanisms. These reentrant circuits can generate fibrillatory activity when interacting with other rapid ectopic foci and under the following conditions: high ectopic focus frequency, slow conduction velocity, and anisotropic tissue. Analyses of electrogram polymorphism allow determination of which zones of tissue permit one to know in which zone of tissue unstable activity exists. Our results give useful insights into the electrophysiological parameters that determine the initiation and maintenance of fibrillatory conduction by two ectopic foci interaction in a simulated two-dimensional sheet of human atrial cells, under chronic AF conditions. es_ES
dc.description.sponsorship This work was partially supported by the Direccion General de Politica Cientifica de la Generalitat Valenciana (PROMETEU 2016/088) and the University of Medellin es_ES
dc.language Inglés es_ES
dc.publisher SAGE Publications es_ES
dc.relation.ispartof Transactions of the Society for Computer Simulation es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Two-dimensional atrial model es_ES
dc.subject Fibrillatory conduction es_ES
dc.subject Ectopic activity es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Fibrillatory conduction in a simulated two-dimensional model of human atrial tissue: effect of the interaction of two ectopic foci es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1177/0037549718782401 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F088/ES/MODELOS COMPUTACIONALES PERSONALIZADOS MULTI-ESCALA PARA LA OPTIMIZACION DEL DIAGNOSTICO Y TRATAMIENTO DE ARRITMIAS CARDIACAS (PERSONALISED DIGITAL HEART)/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Tobón, C.; Saiz Rodríguez, FJ. (2019). Fibrillatory conduction in a simulated two-dimensional model of human atrial tissue: effect of the interaction of two ectopic foci. Transactions of the Society for Computer Simulation. 95(7):577-591. https://doi.org/10.1177/0037549718782401 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1177/0037549718782401 es_ES
dc.description.upvformatpinicio 577 es_ES
dc.description.upvformatpfin 591 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 95 es_ES
dc.description.issue 7 es_ES
dc.relation.pasarela S\386403 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.description.references Fuster, V., Rydén, L. E., Cannom, D. S., Crijns, H. J., Curtis, A. B., … Ellenbogen, K. A. (2006). ACC/AHA/ESC 2006 Guidelines for the Management of Patients With Atrial Fibrillation—Executive Summary. Circulation, 114(7), 700-752. doi:10.1161/circulationaha.106.177031 es_ES
dc.description.references Stewart, S., Hart, C. L., Hole, D. J., & McMurray, J. J. . (2002). A population-based study of the long-term risks associated with atrial fibrillation: 20-year follow-up of the Renfrew/Paisley study. The American Journal of Medicine, 113(5), 359-364. doi:10.1016/s0002-9343(02)01236-6 es_ES
dc.description.references Wolf, P. A., Abbott, R. D., & Kannel, W. B. (1991). Atrial fibrillation as an independent risk factor for stroke: the Framingham Study. Stroke, 22(8), 983-988. doi:10.1161/01.str.22.8.983 es_ES
dc.description.references Krahn, A. D., Manfreda, J., Tate, R. B., Mathewson, F. A. L., & Cuddy, T. E. (1995). The natural history of atrial fibrillation: Incidence, risk factors, and prognosis in the manitoba follow-up study. The American Journal of Medicine, 98(5), 476-484. doi:10.1016/s0002-9343(99)80348-9 es_ES
dc.description.references Zoni-Berisso, M., Lercari, F., Carazza, T., & Domenicucci, S. (2014). Epidemiology of atrial fibrillation: European perspective. Clinical Epidemiology, 213. doi:10.2147/clep.s47385 es_ES
dc.description.references Corradi, D. (2014). Atrial fibrillation from the pathologist’s perspective. Cardiovascular Pathology, 23(2), 71-84. doi:10.1016/j.carpath.2013.12.001 es_ES
dc.description.references Kishore, A., Vail, A., Majid, A., Dawson, J., Lees, K. R., Tyrrell, P. J., & Smith, C. J. (2014). Detection of Atrial Fibrillation After Ischemic Stroke or Transient Ischemic Attack. Stroke, 45(2), 520-526. doi:10.1161/strokeaha.113.003433 es_ES
dc.description.references Knecht, S., Oelschlager, C., Duning, T., Lohmann, H., Albers, J., Stehling, C., … Wersching, H. (2008). Atrial fibrillation in stroke-free patients is associated with memory impairment and hippocampal atrophy. European Heart Journal, 29(17), 2125-2132. doi:10.1093/eurheartj/ehn341 es_ES
dc.description.references Thrall, G., Lane, D., Carroll, D., & Lip, G. Y. H. (2006). Quality of Life in Patients with Atrial Fibrillation: A Systematic Review. The American Journal of Medicine, 119(5), 448.e1-448.e19. doi:10.1016/j.amjmed.2005.10.057 es_ES
dc.description.references Steinberg, B. A., Kim, S., Fonarow, G. C., Thomas, L., Ansell, J., Kowey, P. R., … Piccini, J. P. (2014). Drivers of hospitalization for patients with atrial fibrillation: Results from the Outcomes Registry for Better Informed Treatment of Atrial Fibrillation (ORBIT-AF). American Heart Journal, 167(5), 735-742.e2. doi:10.1016/j.ahj.2014.02.003 es_ES
dc.description.references Kirchhof, P., Benussi, S., Kotecha, D., Ahlsson, A., Atar, D., Casadei, B., … Zeppenfeld, K. (2016). 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Europace, 18(11), 1609-1678. doi:10.1093/europace/euw295 es_ES
dc.description.references Haïssaguerre, M., Jaïs, P., Shah, D. C., Takahashi, A., Hocini, M., Quiniou, G., … Clémenty, J. (1998). Spontaneous Initiation of Atrial Fibrillation by Ectopic Beats Originating in the Pulmonary Veins. New England Journal of Medicine, 339(10), 659-666. doi:10.1056/nejm199809033391003 es_ES
dc.description.references Chen, S.-A., Hsieh, M.-H., Tai, C.-T., Tsai, C.-F., Prakash, V. S., Yu, W.-C., … Chang, M.-S. (1999). Initiation of Atrial Fibrillation by Ectopic Beats Originating From the Pulmonary Veins. Circulation, 100(18), 1879-1886. doi:10.1161/01.cir.100.18.1879 es_ES
dc.description.references Chen, Y. (2000). Arrhythmogenic activity of cardiac muscle in pulmonary veins of the dog: implication for the genesis of atrial fibrillation. Cardiovascular Research, 48(2), 265-273. doi:10.1016/s0008-6363(00)00179-6 es_ES
dc.description.references Nattel, S., Burstein, B., & Dobrev, D. (2008). Atrial Remodeling and Atrial Fibrillation. Circulation: Arrhythmia and Electrophysiology, 1(1), 62-73. doi:10.1161/circep.107.754564 es_ES
dc.description.references De Vos, C. B., Pisters, R., Nieuwlaat, R., Prins, M. H., Tieleman, R. G., Coelen, R.-J. S., … Crijns, H. J. G. M. (2010). Progression From Paroxysmal to Persistent Atrial Fibrillation. Journal of the American College of Cardiology, 55(8), 725-731. doi:10.1016/j.jacc.2009.11.040 es_ES
dc.description.references DE GROOT, N. M. S., & SCHALIJ, M. J. (2006). Fragmented, Long-Duration, Low-Amplitude Electrograms Characterize the Origin of Focal Atrial Tachycardia. Journal of Cardiovascular Electrophysiology, 17(10), 1086-1092. doi:10.1111/j.1540-8167.2006.00568.x es_ES
dc.description.references Pison, L., Tilz, R., Jalife, J., & Haïssaguerre, M. (2016). Pulmonary vein triggers, focal sources, rotors and atrial cardiomyopathy: implications for the choice of the most effective ablation therapy. Journal of Internal Medicine, 279(5), 449-456. doi:10.1111/joim.12490 es_ES
dc.description.references Sanders, P., Berenfeld, O., Hocini, M., Jaïs, P., Vaidyanathan, R., Hsu, L.-F., … Haïssaguerre, M. (2005). Spectral Analysis Identifies Sites of High-Frequency Activity Maintaining Atrial Fibrillation in Humans. Circulation, 112(6), 789-797. doi:10.1161/circulationaha.104.517011 es_ES
dc.description.references Hansen, B. J., Zhao, J., Csepe, T. A., Moore, B. T., Li, N., Jayne, L. A., … Fedorov, V. V. (2015). Atrial fibrillation driven by micro-anatomic intramural re-entry revealed by simultaneous sub-epicardial and sub-endocardial optical mapping in explanted human hearts. European Heart Journal, 36(35), 2390-2401. doi:10.1093/eurheartj/ehv233 es_ES
dc.description.references Narayan, S. M., Krummen, D. E., Shivkumar, K., Clopton, P., Rappel, W.-J., & Miller, J. M. (2012). Treatment of Atrial Fibrillation by the Ablation of Localized Sources. Journal of the American College of Cardiology, 60(7), 628-636. doi:10.1016/j.jacc.2012.05.022 es_ES
dc.description.references Mandapati, R., Skanes, A., Chen, J., Berenfeld, O., & Jalife, J. (2000). Stable Microreentrant Sources as a Mechanism of Atrial Fibrillation in the Isolated Sheep Heart. Circulation, 101(2), 194-199. doi:10.1161/01.cir.101.2.194 es_ES
dc.description.references Mansour, M., Mandapati, R., Berenfeld, O., Chen, J., Samie, F. H., & Jalife, J. (2001). Left-to-Right Gradient of Atrial Frequencies During Acute Atrial Fibrillation in the Isolated Sheep Heart. Circulation, 103(21), 2631-2636. doi:10.1161/01.cir.103.21.2631 es_ES
dc.description.references Jalife, J. (2003). Rotors and Spiral Waves in Atrial Fibrillation. Journal of Cardiovascular Electrophysiology, 14(7), 776-780. doi:10.1046/j.1540-8167.2003.03136.x es_ES
dc.description.references Reumann, M., Bohnert, J., Osswald, B., Hagl, S., & Doessel, O. (2007). Multiple wavelets, rotors, and snakes in atrial fibrillation—a computer simulation study. Journal of Electrocardiology, 40(4), 328-334. doi:10.1016/j.jelectrocard.2006.12.016 es_ES
dc.description.references Ugarte, J. P., Orozco-Duque, A., Tobón, C., Kremen, V., Novak, D., Saiz, J., … Bustamante, J. (2014). Dynamic Approximate Entropy Electroanatomic Maps Detect Rotors in a Simulated Atrial Fibrillation Model. PLoS ONE, 9(12), e114577. doi:10.1371/journal.pone.0114577 es_ES
dc.description.references Arora, R., Verheule, S., Scott, L., Navarrete, A., Katari, V., Wilson, E., … Olgin, J. E. (2003). Arrhythmogenic Substrate of the Pulmonary Veins Assessed by High-Resolution Optical Mapping. Circulation, 107(13), 1816-1821. doi:10.1161/01.cir.0000058461.86339.7e es_ES
dc.description.references Kumagai, K., Gondo, N., Matsumoto, N., Noguchi, H., Tojo, H., Yasuda, T., … Saku, K. (2000). New Technique for Simultaneous Catheter Mapping of Pulmonary Veins for Catheter Ablation in Focal Atrial Fibrillation. Cardiology, 94(4), 233-238. doi:10.1159/000047323 es_ES
dc.description.references Nanthakumar, K., Lau, Y. R., Plumb, V. J., Epstein, A. E., & Kay, G. N. (2004). Electrophysiological Findings in Adolescents With Atrial Fibrillation Who Have Structurally Normal Hearts. Circulation, 110(2), 117-123. doi:10.1161/01.cir.0000134280.40573.d8 es_ES
dc.description.references Lin, W.-S., Tai, C.-T., Hsieh, M.-H., Tsai, C.-F., Lin, Y.-K., Tsao, H.-M., … Chen, S.-A. (2003). Catheter Ablation of Paroxysmal Atrial Fibrillation Initiated by Non–Pulmonary Vein Ectopy. Circulation, 107(25), 3176-3183. doi:10.1161/01.cir.0000074206.52056.2d es_ES
dc.description.references Bosch, R. (1999). Ionic mechanisms of electrical remodeling in human atrial fibrillation. Cardiovascular Research, 44(1), 121-131. doi:10.1016/s0008-6363(99)00178-9 es_ES
dc.description.references Workman, A. (2001). The contribution of ionic currents to changes in refractoriness of human atrial myocytes associated with chronic atrial fibrillation. Cardiovascular Research, 52(2), 226-235. doi:10.1016/s0008-6363(01)00380-7 es_ES
dc.description.references Wijffels, M. C. E. F., Kirchhof, C. J. H. J., Dorland, R., & Allessie, M. A. (1995). Atrial Fibrillation Begets Atrial Fibrillation. Circulation, 92(7), 1954-1968. doi:10.1161/01.cir.92.7.1954 es_ES
dc.description.references Schotten, U., Verheule, S., Kirchhof, P., & Goette, A. (2011). Pathophysiological Mechanisms of Atrial Fibrillation: A Translational Appraisal. Physiological Reviews, 91(1), 265-325. doi:10.1152/physrev.00031.2009 es_ES
dc.description.references Veenhuyzen, G. D. (2004). Atrial fibrillation. Canadian Medical Association Journal, 171(7), 755-760. doi:10.1503/cmaj.1031364 es_ES
dc.description.references Weiss, J. N., Qu, Z., & Shivkumar, K. (2016). Ablating atrial fibrillation: A translational science perspective for clinicians. Heart Rhythm, 13(9), 1868-1877. doi:10.1016/j.hrthm.2016.05.026 es_ES
dc.description.references Jai¨s, P., Hai¨ssaguerre, M., Shah, D. C., Chouairi, S., Gencel, L., Hocini, M., & Cle´menty, J. (1997). A Focal Source of Atrial Fibrillation Treated by Discrete Radiofrequency Ablation. Circulation, 95(3), 572-576. doi:10.1161/01.cir.95.3.572 es_ES
dc.description.references BELHASSEN, B., GLICK, A., & VISKIN, S. (2004). Reentry in a Pulmonary Vein as a Possible Mechanism of Focal Atrial Fibrillation. Journal of Cardiovascular Electrophysiology, 15(7), 824-828. doi:10.1046/j.1540-8167.2004.03453.x es_ES
dc.description.references Wilders, R., Wagner, M. B., Golod, D. A., Kumar, R., Wang, Y.-G., Goolsby, W. N., … Jongsma, H. J. (2000). Effects of anisotropy on the development of cardiac arrhythmias associated with focal activity. Pfl�gers Archiv European Journal of Physiology, 441(2-3), 301-312. doi:10.1007/s004240000413 es_ES
dc.description.references Zhao, J., Butters, T. D., Zhang, H., Pullan, A. J., LeGrice, I. J., Sands, G. B., & Smaill, B. H. (2012). An Image-Based Model of Atrial Muscular Architecture. Circulation: Arrhythmia and Electrophysiology, 5(2), 361-370. doi:10.1161/circep.111.967950 es_ES
dc.description.references Aslanidi, O. V., Boyett, M. R., Dobrzynski, H., Li, J., & Zhang, H. (2009). Mechanisms of Transition from Normal to Reentrant Electrical Activity in a Model of Rabbit Atrial Tissue: Interaction of Tissue Heterogeneity and Anisotropy. Biophysical Journal, 96(3), 798-817. doi:10.1016/j.bpj.2008.09.057 es_ES
dc.description.references Nygren, A., Fiset, C., Firek, L., Clark, J. W., Lindblad, D. S., Clark, R. B., & Giles, W. R. (1998). Mathematical Model of an Adult Human Atrial Cell. Circulation Research, 82(1), 63-81. doi:10.1161/01.res.82.1.63 es_ES
dc.description.references YEN HO, S., SANCHEZ-QUINTANA, D., CABRERA, J. A., & ANDERSON, R. H. (1999). Anatomy of the Left Atrium:. Journal of Cardiovascular Electrophysiology, 10(11), 1525-1533. doi:10.1111/j.1540-8167.1999.tb00211.x es_ES
dc.description.references Tobón, C., Orozco‐Duque, A., Ugarte, J. P., Becerra, M., & Saiz, J. (2017). Complexity of Atrial Fibrillation Electrograms Through Nonlinear Signal Analysis: In Silico Approach. Interpreting Cardiac Electrograms - From Skin to Endocardium. doi:10.5772/intechopen.69475 es_ES
dc.description.references TAKAHASHI, Y., SANDERS, P., JAIS, P., HOCINI, M., DUBOIS, R., ROTTER, M., … HAISSAGUERRE, M. (2006). Organization of Frequency Spectra of Atrial Fibrillation: Relevance to Radiofrequency Catheter Ablation. Journal of Cardiovascular Electrophysiology, 17(4), 382-388. doi:10.1111/j.1540-8167.2005.00414.x es_ES
dc.description.references Tobón, C., Rodríguez, J. F., Ferrero, J. M., Hornero, F., & Saiz, J. (2012). Dominant frequency and organization index maps in a realistic three-dimensional computational model of atrial fibrillation. EP Europace, 14(suppl_5), v25-v32. doi:10.1093/europace/eus268 es_ES
dc.description.references Everett, T. H., Wilson, E. E., Verheule, S., Guerra, J. M., Foreman, S., & Olgin, J. E. (2006). Structural atrial remodeling alters the substrate and spatiotemporal organization of atrial fibrillation: a comparison in canine models of structural and electrical atrial remodeling. American Journal of Physiology-Heart and Circulatory Physiology, 291(6), H2911-H2923. doi:10.1152/ajpheart.01128.2005 es_ES
dc.description.references Jaïs, P., Hocini, M., Macle, L., Choi, K.-J., Deisenhofer, I., Weerasooriya, R., … Haïssaguerre, M. (2002). Distinctive Electrophysiological Properties of Pulmonary Veins in Patients With Atrial Fibrillation. Circulation, 106(19), 2479-2485. doi:10.1161/01.cir.0000036744.39782.9f es_ES
dc.description.references Ikeda, T., Yashima, M., Uchida, T., Hough, D., Fishbein, M. C., Mandel, W. J., … Karagueuzian, H. S. (1997). Attachment of Meandering Reentrant Wave Fronts to Anatomic Obstacles in the Atrium. Circulation Research, 81(5), 753-764. doi:10.1161/01.res.81.5.753 es_ES
dc.description.references Wieser, L., Nowak, C. N., Tilg, B., & Fischer, G. (2008). Mother rotor anchoring in branching tissue with heterogeneous membrane properties / Ankern von mother rotors in verzweigtem Gewebe mit inhomogenen Membraneigenschaften. Biomedizinische Technik/Biomedical Engineering, 53(1), 25-35. doi:10.1515/bmt.2008.004 es_ES
dc.description.references Uno, K., Kumagai, K., Khrestian, C. M., & Waldo, A. L. (1999). New Insights Regarding the Atrial Flutter Reentrant Circuit. Circulation, 100(12), 1354-1360. doi:10.1161/01.cir.100.12.1354 es_ES
dc.description.references Vigmond, E. J., Tsoi, V., Kuo, S., Arevalo, H., Kneller, J., Nattel, S., & Trayanova, N. (2004). The effect of vagally induced dispersion of action potential duration on atrial arrhythmogenesis. Heart Rhythm, 1(3), 334-344. doi:10.1016/j.hrthm.2004.03.077 es_ES
dc.description.references Borek, B., Shajahan, T. K., Gabriels, J., Hodge, A., Glass, L., & Shrier, A. (2012). Pacemaker interactions induce reentrant wave dynamics in engineered cardiac culture. Chaos: An Interdisciplinary Journal of Nonlinear Science, 22(3), 033132. doi:10.1063/1.4747709 es_ES
dc.description.references Gong, Y., Xie, F., Stein, K. M., Garfinkel, A., Culianu, C. A., Lerman, B. B., & Christini, D. J. (2007). Mechanism Underlying Initiation of Paroxysmal Atrial Flutter/Atrial Fibrillation by Ectopic Foci. Circulation, 115(16), 2094-2102. doi:10.1161/circulationaha.106.656504 es_ES
dc.description.references Konings, K. T. S., Smeets, J. L. R. M., Penn, O. C., Wellens, H. J. J., & Allessie, M. A. (1997). Configuration of Unipolar Atrial Electrograms During Electrically Induced Atrial Fibrillation in Humans. Circulation, 95(5), 1231-1241. doi:10.1161/01.cir.95.5.1231 es_ES
dc.description.references RYU, K., SAHADEVAN, J., KHRESTIAN, C. M., STAMBLER, B. S., & WALDO, A. L. (2006). Use of Fast Fourier Transform Analysis of Atrial Electrograms for Rapid Characterization of Atrial Activation-Implications for Delineating Possible Mechanisms of Atrial Tachyarrhythmias. Journal of Cardiovascular Electrophysiology, 17(2), 198-206. doi:10.1111/j.1540-8167.2005.00320.x es_ES
dc.description.references Skanes, A. C., Mandapati, R., Berenfeld, O., Davidenko, J. M., & Jalife, J. (1998). Spatiotemporal Periodicity During Atrial Fibrillation in the Isolated Sheep Heart. Circulation, 98(12), 1236-1248. doi:10.1161/01.cir.98.12.1236 es_ES
dc.description.references Haïssaguerre, M., Sanders, P., Hocini, M., Jaïs, P., & Clémenty, J. (2004). Pulmonary veins in the substrate for atrial fibrillation. Journal of the American College of Cardiology, 43(12), 2290-2292. doi:10.1016/j.jacc.2004.03.036 es_ES
dc.description.references LIN, L.-J., BILLETTE, J., KHALIFE, K., MARTEL, K., WANG, J., & MEDKOUR, D. (1999). Characteristics, Circuit, Mechanism, and Ablation of Reentry in the Rabbit Atrioventricular Node. Journal of Cardiovascular Electrophysiology, 10(7), 954-964. doi:10.1111/j.1540-8167.1999.tb01266.x es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem