- -

Deep Learning in Aeronautics: Air Traffic Trajectory Classification Based on Weather Reports

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Deep Learning in Aeronautics: Air Traffic Trajectory Classification Based on Weather Reports

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Jiménez-Campfens, Néstor es_ES
dc.contributor.author Colomer, Adrián es_ES
dc.contributor.author Núñez, Javier es_ES
dc.contributor.author Mogollón, Juan Manuel es_ES
dc.contributor.author Rodríguez, Antonio L. es_ES
dc.contributor.author Naranjo Ornedo, Valeriana es_ES
dc.date.accessioned 2021-02-03T07:22:59Z
dc.date.available 2021-02-03T07:22:59Z
dc.date.issued 2020-11-06 es_ES
dc.identifier.uri http://hdl.handle.net/10251/160616
dc.description.abstract [EN] New paradigms in aviation, as the expected shortage of qualified pilots and the increasing number of flights worldwide, present big challenges to aeronautic enterprises and regulators. In this sense, a concept known as Single Pilot Operations arises in the task of dealing with these challenges, for which, automation becomes necessary, especially in Air Traffic Management. In this regard, this paper presents a deep learning-based approach to leveraging the job of both ground controllers and pilots. Making use of Meteorological Terminal Air Reports, obtained regularly from every aerodrome worldwide, we created a model based on a multi-layer perceptron capable of determining the approach trajectory of an aircraft thirty minutes prior to the expected landing time. Experiments on aircraft trajectories from Toulouse to Seville, show an accuracy, recall and F1-score higher than 0.9 for the resultant predictive model. es_ES
dc.description.sponsorship This work has received funding from the Clean Sky 2 Joint Undertaking (JU) under grant agreement No 831884. The Titan V used for this research was donated by the NVIDIA Corporation es_ES
dc.language Inglés es_ES
dc.publisher Springer es_ES
dc.relation.ispartof Intelligent Data Engineering and Automated Learning ¿ IDEAL 2020 es_ES
dc.relation.ispartofseries Lecture Notes in Computer Science;12490 es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Air Traffic Management es_ES
dc.subject Weather reports es_ES
dc.subject METAR es_ES
dc.subject Trajectory prediction es_ES
dc.subject Deep learning es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Deep Learning in Aeronautics: Air Traffic Trajectory Classification Based on Weather Reports es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.1007/978-3-030-62365-4_14 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/831884/EU/HUMAN AIRCRAFT ROADMAP FOR VIRTUAL INTELLIGENT SYSTEM/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Jiménez-Campfens, N.; Colomer, A.; Núñez, J.; Mogollón, JM.; Rodríguez, AL.; Naranjo Ornedo, V. (2020). Deep Learning in Aeronautics: Air Traffic Trajectory Classification Based on Weather Reports. Springer. 148-155. https://doi.org/10.1007/978-3-030-62365-4_14 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename 21st International Conference on Intelligent Data Engineering and Automated Learning (IDEAL 2020) es_ES
dc.relation.conferencedate Noviembre 04-06,2020 es_ES
dc.relation.conferenceplace Online es_ES
dc.relation.publisherversion https://doi.org/10.1007/978-3-030-62365-4_14 es_ES
dc.description.upvformatpinicio 148 es_ES
dc.description.upvformatpfin 155 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela S\426091 es_ES
dc.contributor.funder European Commission es_ES
dc.description.references Pilot and technical outlook: Seattle. Boeing Commercial Airplanes, WA (2015) es_ES
dc.description.references Wolter, C.A., Gore, B.F.: NASA/TM-2015-218480: A validated task analysis of the Single Pilot Operations concept, no. January 2015 (2015) es_ES
dc.description.references Harris, D.: A human-centred design agenda for the development of single crew operated commercial aircraft. Aircr. Eng. Aerosp. Technol. 79(5), 518–526 (2007) es_ES
dc.description.references Bailey, R.E., Kramer, L.J., Kennedy, K.D., Stephens, C.L., Etherington, T.J.: An assessment of reduced crew and single pilot operations in commercial transport aircraft operations. In: AIAA/IEEE Digital Avionics System Conference - Proceedings, vol. 2017-September, no. February 2018 (2017) es_ES
dc.description.references Lachter, J., Brandt, S.L., Battiste, V., Ligda, S.V., Matessa, M., Johnson, W.W.: Toward single pilot operations: developing a ground station. In: Proceedings of International Conference on Human-Computer Interactive Aerospace, August (2014) es_ES
dc.description.references Comerford, D., Brandt, S.L., Mogford, R.: NASA/CP - 2013–216513 NASA’s Single -Pilot Operations Technical Interchange Meeting: Proceedings and Findings, April, p. 89 (2013) es_ES
dc.description.references Durand, N., Alliot, J.M., Médioni, F.: Neural nets trained by genetic algorithms for collision avoidance. Appl. Intell. 13(3), 205–213 (2000) es_ES
dc.description.references Choi, S., Kim, Y.J., Briceno, S., Mavris, D.: Prediction of weather-induced airline delays based on machine learning algorithms. In: 2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC), pp. 1–6. IEEE, September 2016 es_ES
dc.description.references Gui, G., Liu, F., Sun, J., Yang, J., Zhou, Z., Zhao, D.: Flight delay prediction based on aviation big data and machine learning. IEEE Trans. Veh. Technol. 69, 140–150 (2019) es_ES
dc.description.references Liu, Y., Hansen, M.: Predicting aircraft trajectories: a deep generative convolutional recurrent neural networks approach. arXiv preprint arXiv:1812.11670 (2018) es_ES
dc.description.references Shi, Z., Xu, M., Pan, Q., Yan, B., Zhang, H.: LSTM-based flight trajectory prediction. In: 2018 IEEE International Joint Conference on Neural Networks (IJCNN), pp. 1–8, July 2018 es_ES
dc.description.references Bosson, C.D., Nikoleris, T.: Supervised learning applied to air traffic trajectory classification. In: 2018 AIAA Information Systems-AIAA Infotech@ Aerospace, p. 1637 (2018) es_ES
dc.description.references FlightRadar24 website. https://www.flightradar24.com/ es_ES
dc.description.references Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015) es_ES
dc.description.references Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014) es_ES
dc.description.references Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) es_ES
dc.description.references Chollet, F., et al.: Keras (2015). https://keras.io es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem