Mao, S., Lu, G., & Chen, J. (2015). Three-dimensional graphene-based composites for energy applications. Nanoscale, 7(16), 6924-6943. doi:10.1039/c4nr06609j
Ito, Y., Tanabe, Y., Sugawara, K., Koshino, M., Takahashi, T., Tanigaki, K., … Chen, M. (2018). Three-dimensional porous graphene networks expand graphene-based electronic device applications. Physical Chemistry Chemical Physics, 20(9), 6024-6033. doi:10.1039/c7cp07667c
Qiu, B., Xing, M., & Zhang, J. (2018). Recent advances in three-dimensional graphene based materials for catalysis applications. Chemical Society Reviews, 47(6), 2165-2216. doi:10.1039/c7cs00904f
[+]
Mao, S., Lu, G., & Chen, J. (2015). Three-dimensional graphene-based composites for energy applications. Nanoscale, 7(16), 6924-6943. doi:10.1039/c4nr06609j
Ito, Y., Tanabe, Y., Sugawara, K., Koshino, M., Takahashi, T., Tanigaki, K., … Chen, M. (2018). Three-dimensional porous graphene networks expand graphene-based electronic device applications. Physical Chemistry Chemical Physics, 20(9), 6024-6033. doi:10.1039/c7cp07667c
Qiu, B., Xing, M., & Zhang, J. (2018). Recent advances in three-dimensional graphene based materials for catalysis applications. Chemical Society Reviews, 47(6), 2165-2216. doi:10.1039/c7cs00904f
Huang, X., Qian, K., Yang, J., Zhang, J., Li, L., Yu, C., & Zhao, D. (2012). Functional Nanoporous Graphene Foams with Controlled Pore Sizes. Advanced Materials, 24(32), 4419-4423. doi:10.1002/adma.201201680
Xiao, X., Beechem, T. E., Brumbach, M. T., Lambert, T. N., Davis, D. J., Michael, J. R., … Polsky, R. (2012). Lithographically Defined Three-Dimensional Graphene Structures. ACS Nano, 6(4), 3573-3579. doi:10.1021/nn300655c
Moon, G., Shin, Y., Choi, D., Arey, B. W., Exarhos, G. J., Wang, C., … Liu, J. (2013). Catalytic templating approaches for three-dimensional hollow carbon/graphene oxide nano-architectures. Nanoscale, 5(14), 6291. doi:10.1039/c3nr01387a
Lee, J.-S., Kim, S.-I., Yoon, J.-C., & Jang, J.-H. (2013). Chemical Vapor Deposition of Mesoporous Graphene Nanoballs for Supercapacitor. ACS Nano, 7(7), 6047-6055. doi:10.1021/nn401850z
Huang, X., Xu, D., Yuan, S., Ma, D., Wang, S., Zheng, H., & Zhang, X. (2014). Dendritic Ni-P-Coated Melamine Foam for a Lightweight, Low-Cost, and Amphipathic Three-Dimensional Current Collector for Binder-Free Electrodes. Advanced Materials, 26(42), 7264-7270. doi:10.1002/adma.201402717
Ouyang, W., Sun, J., Memon, J., Wang, C., Geng, J., & Huang, Y. (2013). Scalable preparation of three-dimensional porous structures of reduced graphene oxide/cellulose composites and their application in supercapacitors. Carbon, 62, 501-509. doi:10.1016/j.carbon.2013.06.049
Yoon, J.-C., Lee, J.-S., Kim, S.-I., Kim, K.-H., & Jang, J.-H. (2013). Three-Dimensional Graphene Nano-Networks with High Quality and Mass Production Capability via Precursor-Assisted Chemical Vapor Deposition. Scientific Reports, 3(1). doi:10.1038/srep01788
Zakhidov, A. A., Baughman, R. H., Iqbal, Z., Cui, C., Khayrullin, I., Dantas, S. O., … Ralchenko, V. G. (1998). Carbon Structures with Three-Dimensional Periodicity at Optical Wavelengths. Science, 282(5390), 897-901. doi:10.1126/science.282.5390.897
Vu, A., Li, X., Phillips, J., Han, A., Smyrl, W. H., Bühlmann, P., & Stein, A. (2013). Three-Dimensionally Ordered Mesoporous (3DOm) Carbon Materials as Electrodes for Electrochemical Double-Layer Capacitors with Ionic Liquid Electrolytes. Chemistry of Materials, 25(21), 4137-4148. doi:10.1021/cm400915p
Mateo, D., Esteve-Adell, I., Albero, J., Primo, A., & García, H. (2017). Oriented 2.0.0 Cu2O nanoplatelets supported on few-layers graphene as efficient visible light photocatalyst for overall water splitting. Applied Catalysis B: Environmental, 201, 582-590. doi:10.1016/j.apcatb.2016.08.033
Mateo, D., Esteve-Adell, I., Albero, J., Royo, J. F. S., Primo, A., & Garcia, H. (2016). 111 oriented gold nanoplatelets on multilayer graphene as visible light photocatalyst for overall water splitting. Nature Communications, 7(1). doi:10.1038/ncomms11819
Latorre-Sánchez, M., Primo, A., & García, H. (2013). P-Doped Graphene Obtained by Pyrolysis of Modified Alginate as a Photocatalyst for Hydrogen Generation from Water-Methanol Mixtures. Angewandte Chemie International Edition, 52(45), 11813-11816. doi:10.1002/anie.201304505
Zhou, W., Jia, J., Lu, J., Yang, L., Hou, D., Li, G., & Chen, S. (2016). Recent developments of carbon-based electrocatalysts for hydrogen evolution reaction. Nano Energy, 28, 29-43. doi:10.1016/j.nanoen.2016.08.027
Huang, X., Zhao, Y., Ao, Z., & Wang, G. (2014). Micelle-Template Synthesis of Nitrogen-Doped Mesoporous Graphene as an Efficient Metal-Free Electrocatalyst for Hydrogen Production. Scientific Reports, 4(1). doi:10.1038/srep07557
Choi, B. G., Yang, M., Hong, W. H., Choi, J. W., & Huh, Y. S. (2012). 3D Macroporous Graphene Frameworks for Supercapacitors with High Energy and Power Densities. ACS Nano, 6(5), 4020-4028. doi:10.1021/nn3003345
Jiao, Y., Zheng, Y., Davey, K., & Qiao, S.-Z. (2016). Activity origin and catalyst design principles for electrocatalytic hydrogen evolution on heteroatom-doped graphene. Nature Energy, 1(10). doi:10.1038/nenergy.2016.130
Latorre-Sánchez, M., Primo, A., Atienzar, P., Forneli, A., & García, H. (2014). p-n Heterojunction of Doped Graphene Films Obtained by Pyrolysis of Biomass Precursors. Small, 11(8), 970-975. doi:10.1002/smll.201402278
Jiang, H., Zhu, Y., Su, Y., Yao, Y., Liu, Y., Yang, X., & Li, C. (2015). Highly dual-doped multilayer nanoporous graphene: efficient metal-free electrocatalysts for the hydrogen evolution reaction. Journal of Materials Chemistry A, 3(24), 12642-12645. doi:10.1039/c5ta02792f
Li, T., Tang, D., Wang, M., Song, Q., & Li, C. M. (2018). Ionic Liquid Originated Synthesis of N,P-doped Graphene for Hydrogen Evolution Reaction. ChemistrySelect, 3(24), 6814-6820. doi:10.1002/slct.201801439
Dey, A., Chroneos, A., Braithwaite, N. S. J., Gandhiraman, R. P., & Krishnamurthy, S. (2016). Plasma engineering of graphene. Applied Physics Reviews, 3(2), 021301. doi:10.1063/1.4947188
Yang, R., Zhang, L., Wang, Y., Shi, Z., Shi, D., Gao, H., … Zhang, G. (2010). An Anisotropic Etching Effect in the Graphene Basal Plane. Advanced Materials, 22(36), 4014-4019. doi:10.1002/adma.201000618
Sathe, B. R., Zou, X., & Asefa, T. (2014). Metal-free B-doped graphene with efficient electrocatalytic activity for hydrogen evolution reaction. Catal. Sci. Technol., 4(7), 2023-2030. doi:10.1039/c4cy00075g
Ito, Y., Cong, W., Fujita, T., Tang, Z., & Chen, M. (2014). High Catalytic Activity of Nitrogen and Sulfur Co-Doped Nanoporous Graphene in the Hydrogen Evolution Reaction. Angewandte Chemie International Edition, 54(7), 2131-2136. doi:10.1002/anie.201410050
Jiang, Z., Jiang, Z., Tian, X., & Chen, W. (2014). Amine-functionalized holey graphene as a highly active metal-free catalyst for the oxygen reduction reaction. J. Mater. Chem. A, 2(2), 441-450. doi:10.1039/c3ta13832a
Zhou, J., Yue, H., Qi, F., Wang, H., & Chen, Y. (2017). Significantly enhanced electrocatalytic properties of three-dimensional graphene foam via Ar plasma pretreatment and N, S co-doping. International Journal of Hydrogen Energy, 42(44), 27004-27012. doi:10.1016/j.ijhydene.2017.09.100
Zhou, J., Qi, F., Chen, Y., Wang, Z., Zheng, B., & Wang, X. (2018). CVD-grown three-dimensional sulfur-doped graphene as a binder-free electrocatalytic electrode for highly effective and stable hydrogen evolution reaction. Journal of Materials Science, 53(10), 7767-7777. doi:10.1007/s10853-018-2118-6
Tian, Y., Ye, Y., Wang, X., Peng, S., Wei, Z., Zhang, X., & Liu, W. (2017). Three-dimensional N-doped, plasma-etched graphene: Highly active metal-free catalyst for hydrogen evolution reaction. Applied Catalysis A: General, 529, 127-133. doi:10.1016/j.apcata.2016.10.021
Niu, J., Shen, S., He, S., Liu, Z., Feng, P., Zhang, S., … Zhu, Z. (2015). Synthesis and photoactivity of anatase porous single crystals with different pore sizes. Ceramics International, 41(9), 11936-11944. doi:10.1016/j.ceramint.2015.06.005
Mateo, D., Albero, J., & García, H. (2017). Photoassisted methanation using Cu2O nanoparticles supported on graphene as a photocatalyst. Energy & Environmental Science, 10(11), 2392-2400. doi:10.1039/c7ee02287e
[-]