- -

Uniform nanoporous graphene sponge from natural polysaccharides as a metal-free electrocatalyst for hydrogen generation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Uniform nanoporous graphene sponge from natural polysaccharides as a metal-free electrocatalyst for hydrogen generation

Mostrar el registro completo del ítem

Niu, J.; Doménech-Carbó, A.; Primo Arnau, AM.; García Gómez, H. (2019). Uniform nanoporous graphene sponge from natural polysaccharides as a metal-free electrocatalyst for hydrogen generation. RSC Advances. 9(1):99-106. https://doi.org/10.1039/c8ra08745h

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/160676

Ficheros en el ítem

Metadatos del ítem

Título: Uniform nanoporous graphene sponge from natural polysaccharides as a metal-free electrocatalyst for hydrogen generation
Autor: Niu, Jinan Doménech-Carbó, Antonio Primo Arnau, Ana Maria García Gómez, Hermenegildo
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
[EN] Structuring of graphene as graphene sponges in the submicrometric scale has been achieved by using silica spheres (80 nm diameter) as hard templates and chitosan or alginate as precursor of defective N-doped or undoped ...[+]
Derechos de uso: Reconocimiento - No comercial (by-nc)
Fuente:
RSC Advances. (eissn: 2046-2069 )
DOI: 10.1039/c8ra08745h
Editorial:
The Royal Society of Chemistry
Versión del editor: https://doi.org/10.1039/c8ra08745h
Código del Proyecto:
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F083/
info:eu-repo/grantAgreement/NSFC//41502032/
info:eu-repo/grantAgreement/CSC//201706425026/
MINECO/CTQ2015-698153-COP2-R1
Agradecimientos:
Financial support from the Spanish Ministry of Economy and Competitiveness (Severo Ochoa and CTQ2015-698153-COP2-R1) and Generalitat Valenciana (Prometeo 2017-083) is gratefully acknowledged. A. P. thanks the Spanish ...[+]
Tipo: Artículo

References

Mao, S., Lu, G., & Chen, J. (2015). Three-dimensional graphene-based composites for energy applications. Nanoscale, 7(16), 6924-6943. doi:10.1039/c4nr06609j

Ito, Y., Tanabe, Y., Sugawara, K., Koshino, M., Takahashi, T., Tanigaki, K., … Chen, M. (2018). Three-dimensional porous graphene networks expand graphene-based electronic device applications. Physical Chemistry Chemical Physics, 20(9), 6024-6033. doi:10.1039/c7cp07667c

Qiu, B., Xing, M., & Zhang, J. (2018). Recent advances in three-dimensional graphene based materials for catalysis applications. Chemical Society Reviews, 47(6), 2165-2216. doi:10.1039/c7cs00904f [+]
Mao, S., Lu, G., & Chen, J. (2015). Three-dimensional graphene-based composites for energy applications. Nanoscale, 7(16), 6924-6943. doi:10.1039/c4nr06609j

Ito, Y., Tanabe, Y., Sugawara, K., Koshino, M., Takahashi, T., Tanigaki, K., … Chen, M. (2018). Three-dimensional porous graphene networks expand graphene-based electronic device applications. Physical Chemistry Chemical Physics, 20(9), 6024-6033. doi:10.1039/c7cp07667c

Qiu, B., Xing, M., & Zhang, J. (2018). Recent advances in three-dimensional graphene based materials for catalysis applications. Chemical Society Reviews, 47(6), 2165-2216. doi:10.1039/c7cs00904f

Huang, X., Qian, K., Yang, J., Zhang, J., Li, L., Yu, C., & Zhao, D. (2012). Functional Nanoporous Graphene Foams with Controlled Pore Sizes. Advanced Materials, 24(32), 4419-4423. doi:10.1002/adma.201201680

Xiao, X., Beechem, T. E., Brumbach, M. T., Lambert, T. N., Davis, D. J., Michael, J. R., … Polsky, R. (2012). Lithographically Defined Three-Dimensional Graphene Structures. ACS Nano, 6(4), 3573-3579. doi:10.1021/nn300655c

Moon, G., Shin, Y., Choi, D., Arey, B. W., Exarhos, G. J., Wang, C., … Liu, J. (2013). Catalytic templating approaches for three-dimensional hollow carbon/graphene oxide nano-architectures. Nanoscale, 5(14), 6291. doi:10.1039/c3nr01387a

Lee, J.-S., Kim, S.-I., Yoon, J.-C., & Jang, J.-H. (2013). Chemical Vapor Deposition of Mesoporous Graphene Nanoballs for Supercapacitor. ACS Nano, 7(7), 6047-6055. doi:10.1021/nn401850z

Huang, X., Xu, D., Yuan, S., Ma, D., Wang, S., Zheng, H., & Zhang, X. (2014). Dendritic Ni-P-Coated Melamine Foam for a Lightweight, Low-Cost, and Amphipathic Three-Dimensional Current Collector for Binder-Free Electrodes. Advanced Materials, 26(42), 7264-7270. doi:10.1002/adma.201402717

Ouyang, W., Sun, J., Memon, J., Wang, C., Geng, J., & Huang, Y. (2013). Scalable preparation of three-dimensional porous structures of reduced graphene oxide/cellulose composites and their application in supercapacitors. Carbon, 62, 501-509. doi:10.1016/j.carbon.2013.06.049

Yoon, J.-C., Lee, J.-S., Kim, S.-I., Kim, K.-H., & Jang, J.-H. (2013). Three-Dimensional Graphene Nano-Networks with High Quality and Mass Production Capability via Precursor-Assisted Chemical Vapor Deposition. Scientific Reports, 3(1). doi:10.1038/srep01788

Zakhidov, A. A., Baughman, R. H., Iqbal, Z., Cui, C., Khayrullin, I., Dantas, S. O., … Ralchenko, V. G. (1998). Carbon Structures with Three-Dimensional Periodicity at Optical Wavelengths. Science, 282(5390), 897-901. doi:10.1126/science.282.5390.897

Vu, A., Li, X., Phillips, J., Han, A., Smyrl, W. H., Bühlmann, P., & Stein, A. (2013). Three-Dimensionally Ordered Mesoporous (3DOm) Carbon Materials as Electrodes for Electrochemical Double-Layer Capacitors with Ionic Liquid Electrolytes. Chemistry of Materials, 25(21), 4137-4148. doi:10.1021/cm400915p

Mateo, D., Esteve-Adell, I., Albero, J., Primo, A., & García, H. (2017). Oriented 2.0.0 Cu2O nanoplatelets supported on few-layers graphene as efficient visible light photocatalyst for overall water splitting. Applied Catalysis B: Environmental, 201, 582-590. doi:10.1016/j.apcatb.2016.08.033

Mateo, D., Esteve-Adell, I., Albero, J., Royo, J. F. S., Primo, A., & Garcia, H. (2016). 111 oriented gold nanoplatelets on multilayer graphene as visible light photocatalyst for overall water splitting. Nature Communications, 7(1). doi:10.1038/ncomms11819

Latorre-Sánchez, M., Primo, A., & García, H. (2013). P-Doped Graphene Obtained by Pyrolysis of Modified Alginate as a Photocatalyst for Hydrogen Generation from Water-Methanol Mixtures. Angewandte Chemie International Edition, 52(45), 11813-11816. doi:10.1002/anie.201304505

Zhou, W., Jia, J., Lu, J., Yang, L., Hou, D., Li, G., & Chen, S. (2016). Recent developments of carbon-based electrocatalysts for hydrogen evolution reaction. Nano Energy, 28, 29-43. doi:10.1016/j.nanoen.2016.08.027

Huang, X., Zhao, Y., Ao, Z., & Wang, G. (2014). Micelle-Template Synthesis of Nitrogen-Doped Mesoporous Graphene as an Efficient Metal-Free Electrocatalyst for Hydrogen Production. Scientific Reports, 4(1). doi:10.1038/srep07557

Choi, B. G., Yang, M., Hong, W. H., Choi, J. W., & Huh, Y. S. (2012). 3D Macroporous Graphene Frameworks for Supercapacitors with High Energy and Power Densities. ACS Nano, 6(5), 4020-4028. doi:10.1021/nn3003345

Jiao, Y., Zheng, Y., Davey, K., & Qiao, S.-Z. (2016). Activity origin and catalyst design principles for electrocatalytic hydrogen evolution on heteroatom-doped graphene. Nature Energy, 1(10). doi:10.1038/nenergy.2016.130

Latorre-Sánchez, M., Primo, A., Atienzar, P., Forneli, A., & García, H. (2014). p-n Heterojunction of Doped Graphene Films Obtained by Pyrolysis of Biomass Precursors. Small, 11(8), 970-975. doi:10.1002/smll.201402278

Jiang, H., Zhu, Y., Su, Y., Yao, Y., Liu, Y., Yang, X., & Li, C. (2015). Highly dual-doped multilayer nanoporous graphene: efficient metal-free electrocatalysts for the hydrogen evolution reaction. Journal of Materials Chemistry A, 3(24), 12642-12645. doi:10.1039/c5ta02792f

Li, T., Tang, D., Wang, M., Song, Q., & Li, C. M. (2018). Ionic Liquid Originated Synthesis of N,P-doped Graphene for Hydrogen Evolution Reaction. ChemistrySelect, 3(24), 6814-6820. doi:10.1002/slct.201801439

Dey, A., Chroneos, A., Braithwaite, N. S. J., Gandhiraman, R. P., & Krishnamurthy, S. (2016). Plasma engineering of graphene. Applied Physics Reviews, 3(2), 021301. doi:10.1063/1.4947188

Yang, R., Zhang, L., Wang, Y., Shi, Z., Shi, D., Gao, H., … Zhang, G. (2010). An Anisotropic Etching Effect in the Graphene Basal Plane. Advanced Materials, 22(36), 4014-4019. doi:10.1002/adma.201000618

Sathe, B. R., Zou, X., & Asefa, T. (2014). Metal-free B-doped graphene with efficient electrocatalytic activity for hydrogen evolution reaction. Catal. Sci. Technol., 4(7), 2023-2030. doi:10.1039/c4cy00075g

Ito, Y., Cong, W., Fujita, T., Tang, Z., & Chen, M. (2014). High Catalytic Activity of Nitrogen and Sulfur Co-Doped Nanoporous Graphene in the Hydrogen Evolution Reaction. Angewandte Chemie International Edition, 54(7), 2131-2136. doi:10.1002/anie.201410050

Jiang, Z., Jiang, Z., Tian, X., & Chen, W. (2014). Amine-functionalized holey graphene as a highly active metal-free catalyst for the oxygen reduction reaction. J. Mater. Chem. A, 2(2), 441-450. doi:10.1039/c3ta13832a

Zhou, J., Yue, H., Qi, F., Wang, H., & Chen, Y. (2017). Significantly enhanced electrocatalytic properties of three-dimensional graphene foam via Ar plasma pretreatment and N, S co-doping. International Journal of Hydrogen Energy, 42(44), 27004-27012. doi:10.1016/j.ijhydene.2017.09.100

Zhou, J., Qi, F., Chen, Y., Wang, Z., Zheng, B., & Wang, X. (2018). CVD-grown three-dimensional sulfur-doped graphene as a binder-free electrocatalytic electrode for highly effective and stable hydrogen evolution reaction. Journal of Materials Science, 53(10), 7767-7777. doi:10.1007/s10853-018-2118-6

Tian, Y., Ye, Y., Wang, X., Peng, S., Wei, Z., Zhang, X., & Liu, W. (2017). Three-dimensional N-doped, plasma-etched graphene: Highly active metal-free catalyst for hydrogen evolution reaction. Applied Catalysis A: General, 529, 127-133. doi:10.1016/j.apcata.2016.10.021

Niu, J., Shen, S., He, S., Liu, Z., Feng, P., Zhang, S., … Zhu, Z. (2015). Synthesis and photoactivity of anatase porous single crystals with different pore sizes. Ceramics International, 41(9), 11936-11944. doi:10.1016/j.ceramint.2015.06.005

Mateo, D., Albero, J., & García, H. (2017). Photoassisted methanation using Cu2O nanoparticles supported on graphene as a photocatalyst. Energy & Environmental Science, 10(11), 2392-2400. doi:10.1039/c7ee02287e

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem