- -

Uniform nanoporous graphene sponge from natural polysaccharides as a metal-free electrocatalyst for hydrogen generation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Uniform nanoporous graphene sponge from natural polysaccharides as a metal-free electrocatalyst for hydrogen generation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Niu, Jinan es_ES
dc.contributor.author Doménech-Carbó, Antonio es_ES
dc.contributor.author Primo Arnau, Ana Maria es_ES
dc.contributor.author García Gómez, Hermenegildo es_ES
dc.date.accessioned 2021-02-04T04:31:56Z
dc.date.available 2021-02-04T04:31:56Z
dc.date.issued 2019 es_ES
dc.identifier.uri http://hdl.handle.net/10251/160676
dc.description.abstract [EN] Structuring of graphene as graphene sponges in the submicrometric scale has been achieved by using silica spheres (80 nm diameter) as hard templates and chitosan or alginate as precursor of defective N-doped or undoped graphene, respectively. The resulting defective N-doped graphene sponge exhibits a remarkable activity and stability for hydrogen evolution reaction with onset at 203 mV for a current density of 0.5 mA cm(-2) with a small Tafel plot slope of 69.7 mV dec(-1). In addition, the graphene sponge also exhibits a high double layer capacitance of 11.65 mF cm(-2). Comparison with an analogous N-doped graphene sample shows that this electrochemical properties derive from the spatial structuring and large surface area. es_ES
dc.description.sponsorship Financial support from the Spanish Ministry of Economy and Competitiveness (Severo Ochoa and CTQ2015-698153-COP2-R1) and Generalitat Valenciana (Prometeo 2017-083) is gratefully acknowledged. A. P. thanks the Spanish Ministry for a Ramon y Cajal research associate contract. J. Niu also gratefully acknowledges financial support from the China Scholarship Council (201706425026) and the National Natural Science Foundation of China (41502032). es_ES
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation MINECO/CTQ2015-698153-COP2-R1 es_ES
dc.relation.ispartof RSC Advances es_ES
dc.rights Reconocimiento - No comercial (by-nc) es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Uniform nanoporous graphene sponge from natural polysaccharides as a metal-free electrocatalyst for hydrogen generation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c8ra08745h es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F083/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSFC//41502032/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CSC//201706425026/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Niu, J.; Doménech-Carbó, A.; Primo Arnau, AM.; García Gómez, H. (2019). Uniform nanoporous graphene sponge from natural polysaccharides as a metal-free electrocatalyst for hydrogen generation. RSC Advances. 9(1):99-106. https://doi.org/10.1039/c8ra08745h es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/c8ra08745h es_ES
dc.description.upvformatpinicio 99 es_ES
dc.description.upvformatpfin 106 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 2046-2069 es_ES
dc.relation.pasarela S\398868 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder China Scholarship Council es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder National Natural Science Foundation of China es_ES
dc.description.references Mao, S., Lu, G., & Chen, J. (2015). Three-dimensional graphene-based composites for energy applications. Nanoscale, 7(16), 6924-6943. doi:10.1039/c4nr06609j es_ES
dc.description.references Ito, Y., Tanabe, Y., Sugawara, K., Koshino, M., Takahashi, T., Tanigaki, K., … Chen, M. (2018). Three-dimensional porous graphene networks expand graphene-based electronic device applications. Physical Chemistry Chemical Physics, 20(9), 6024-6033. doi:10.1039/c7cp07667c es_ES
dc.description.references Qiu, B., Xing, M., & Zhang, J. (2018). Recent advances in three-dimensional graphene based materials for catalysis applications. Chemical Society Reviews, 47(6), 2165-2216. doi:10.1039/c7cs00904f es_ES
dc.description.references Huang, X., Qian, K., Yang, J., Zhang, J., Li, L., Yu, C., & Zhao, D. (2012). Functional Nanoporous Graphene Foams with Controlled Pore Sizes. Advanced Materials, 24(32), 4419-4423. doi:10.1002/adma.201201680 es_ES
dc.description.references Xiao, X., Beechem, T. E., Brumbach, M. T., Lambert, T. N., Davis, D. J., Michael, J. R., … Polsky, R. (2012). Lithographically Defined Three-Dimensional Graphene Structures. ACS Nano, 6(4), 3573-3579. doi:10.1021/nn300655c es_ES
dc.description.references Moon, G., Shin, Y., Choi, D., Arey, B. W., Exarhos, G. J., Wang, C., … Liu, J. (2013). Catalytic templating approaches for three-dimensional hollow carbon/graphene oxide nano-architectures. Nanoscale, 5(14), 6291. doi:10.1039/c3nr01387a es_ES
dc.description.references Lee, J.-S., Kim, S.-I., Yoon, J.-C., & Jang, J.-H. (2013). Chemical Vapor Deposition of Mesoporous Graphene Nanoballs for Supercapacitor. ACS Nano, 7(7), 6047-6055. doi:10.1021/nn401850z es_ES
dc.description.references Huang, X., Xu, D., Yuan, S., Ma, D., Wang, S., Zheng, H., & Zhang, X. (2014). Dendritic Ni-P-Coated Melamine Foam for a Lightweight, Low-Cost, and Amphipathic Three-Dimensional Current Collector for Binder-Free Electrodes. Advanced Materials, 26(42), 7264-7270. doi:10.1002/adma.201402717 es_ES
dc.description.references Ouyang, W., Sun, J., Memon, J., Wang, C., Geng, J., & Huang, Y. (2013). Scalable preparation of three-dimensional porous structures of reduced graphene oxide/cellulose composites and their application in supercapacitors. Carbon, 62, 501-509. doi:10.1016/j.carbon.2013.06.049 es_ES
dc.description.references Yoon, J.-C., Lee, J.-S., Kim, S.-I., Kim, K.-H., & Jang, J.-H. (2013). Three-Dimensional Graphene Nano-Networks with High Quality and Mass Production Capability via Precursor-Assisted Chemical Vapor Deposition. Scientific Reports, 3(1). doi:10.1038/srep01788 es_ES
dc.description.references Zakhidov, A. A., Baughman, R. H., Iqbal, Z., Cui, C., Khayrullin, I., Dantas, S. O., … Ralchenko, V. G. (1998). Carbon Structures with Three-Dimensional Periodicity at Optical Wavelengths. Science, 282(5390), 897-901. doi:10.1126/science.282.5390.897 es_ES
dc.description.references Vu, A., Li, X., Phillips, J., Han, A., Smyrl, W. H., Bühlmann, P., & Stein, A. (2013). Three-Dimensionally Ordered Mesoporous (3DOm) Carbon Materials as Electrodes for Electrochemical Double-Layer Capacitors with Ionic Liquid Electrolytes. Chemistry of Materials, 25(21), 4137-4148. doi:10.1021/cm400915p es_ES
dc.description.references Mateo, D., Esteve-Adell, I., Albero, J., Primo, A., & García, H. (2017). Oriented 2.0.0 Cu2O nanoplatelets supported on few-layers graphene as efficient visible light photocatalyst for overall water splitting. Applied Catalysis B: Environmental, 201, 582-590. doi:10.1016/j.apcatb.2016.08.033 es_ES
dc.description.references Mateo, D., Esteve-Adell, I., Albero, J., Royo, J. F. S., Primo, A., & Garcia, H. (2016). 111 oriented gold nanoplatelets on multilayer graphene as visible light photocatalyst for overall water splitting. Nature Communications, 7(1). doi:10.1038/ncomms11819 es_ES
dc.description.references Latorre-Sánchez, M., Primo, A., & García, H. (2013). P-Doped Graphene Obtained by Pyrolysis of Modified Alginate as a Photocatalyst for Hydrogen Generation from Water-Methanol Mixtures. Angewandte Chemie International Edition, 52(45), 11813-11816. doi:10.1002/anie.201304505 es_ES
dc.description.references Zhou, W., Jia, J., Lu, J., Yang, L., Hou, D., Li, G., & Chen, S. (2016). Recent developments of carbon-based electrocatalysts for hydrogen evolution reaction. Nano Energy, 28, 29-43. doi:10.1016/j.nanoen.2016.08.027 es_ES
dc.description.references Huang, X., Zhao, Y., Ao, Z., & Wang, G. (2014). Micelle-Template Synthesis of Nitrogen-Doped Mesoporous Graphene as an Efficient Metal-Free Electrocatalyst for Hydrogen Production. Scientific Reports, 4(1). doi:10.1038/srep07557 es_ES
dc.description.references Choi, B. G., Yang, M., Hong, W. H., Choi, J. W., & Huh, Y. S. (2012). 3D Macroporous Graphene Frameworks for Supercapacitors with High Energy and Power Densities. ACS Nano, 6(5), 4020-4028. doi:10.1021/nn3003345 es_ES
dc.description.references Jiao, Y., Zheng, Y., Davey, K., & Qiao, S.-Z. (2016). Activity origin and catalyst design principles for electrocatalytic hydrogen evolution on heteroatom-doped graphene. Nature Energy, 1(10). doi:10.1038/nenergy.2016.130 es_ES
dc.description.references Latorre-Sánchez, M., Primo, A., Atienzar, P., Forneli, A., & García, H. (2014). p-n Heterojunction of Doped Graphene Films Obtained by Pyrolysis of Biomass Precursors. Small, 11(8), 970-975. doi:10.1002/smll.201402278 es_ES
dc.description.references Jiang, H., Zhu, Y., Su, Y., Yao, Y., Liu, Y., Yang, X., & Li, C. (2015). Highly dual-doped multilayer nanoporous graphene: efficient metal-free electrocatalysts for the hydrogen evolution reaction. Journal of Materials Chemistry A, 3(24), 12642-12645. doi:10.1039/c5ta02792f es_ES
dc.description.references Li, T., Tang, D., Wang, M., Song, Q., & Li, C. M. (2018). Ionic Liquid Originated Synthesis of N,P-doped Graphene for Hydrogen Evolution Reaction. ChemistrySelect, 3(24), 6814-6820. doi:10.1002/slct.201801439 es_ES
dc.description.references Dey, A., Chroneos, A., Braithwaite, N. S. J., Gandhiraman, R. P., & Krishnamurthy, S. (2016). Plasma engineering of graphene. Applied Physics Reviews, 3(2), 021301. doi:10.1063/1.4947188 es_ES
dc.description.references Yang, R., Zhang, L., Wang, Y., Shi, Z., Shi, D., Gao, H., … Zhang, G. (2010). An Anisotropic Etching Effect in the Graphene Basal Plane. Advanced Materials, 22(36), 4014-4019. doi:10.1002/adma.201000618 es_ES
dc.description.references Sathe, B. R., Zou, X., & Asefa, T. (2014). Metal-free B-doped graphene with efficient electrocatalytic activity for hydrogen evolution reaction. Catal. Sci. Technol., 4(7), 2023-2030. doi:10.1039/c4cy00075g es_ES
dc.description.references Ito, Y., Cong, W., Fujita, T., Tang, Z., & Chen, M. (2014). High Catalytic Activity of Nitrogen and Sulfur Co-Doped Nanoporous Graphene in the Hydrogen Evolution Reaction. Angewandte Chemie International Edition, 54(7), 2131-2136. doi:10.1002/anie.201410050 es_ES
dc.description.references Jiang, Z., Jiang, Z., Tian, X., & Chen, W. (2014). Amine-functionalized holey graphene as a highly active metal-free catalyst for the oxygen reduction reaction. J. Mater. Chem. A, 2(2), 441-450. doi:10.1039/c3ta13832a es_ES
dc.description.references Zhou, J., Yue, H., Qi, F., Wang, H., & Chen, Y. (2017). Significantly enhanced electrocatalytic properties of three-dimensional graphene foam via Ar plasma pretreatment and N, S co-doping. International Journal of Hydrogen Energy, 42(44), 27004-27012. doi:10.1016/j.ijhydene.2017.09.100 es_ES
dc.description.references Zhou, J., Qi, F., Chen, Y., Wang, Z., Zheng, B., & Wang, X. (2018). CVD-grown three-dimensional sulfur-doped graphene as a binder-free electrocatalytic electrode for highly effective and stable hydrogen evolution reaction. Journal of Materials Science, 53(10), 7767-7777. doi:10.1007/s10853-018-2118-6 es_ES
dc.description.references Tian, Y., Ye, Y., Wang, X., Peng, S., Wei, Z., Zhang, X., & Liu, W. (2017). Three-dimensional N-doped, plasma-etched graphene: Highly active metal-free catalyst for hydrogen evolution reaction. Applied Catalysis A: General, 529, 127-133. doi:10.1016/j.apcata.2016.10.021 es_ES
dc.description.references Niu, J., Shen, S., He, S., Liu, Z., Feng, P., Zhang, S., … Zhu, Z. (2015). Synthesis and photoactivity of anatase porous single crystals with different pore sizes. Ceramics International, 41(9), 11936-11944. doi:10.1016/j.ceramint.2015.06.005 es_ES
dc.description.references Mateo, D., Albero, J., & García, H. (2017). Photoassisted methanation using Cu2O nanoparticles supported on graphene as a photocatalyst. Energy & Environmental Science, 10(11), 2392-2400. doi:10.1039/c7ee02287e es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem