Bing, Y., Liu, H., Zhang, L., Ghosh, D., & Zhang, J. (2010). Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction. Chemical Society Reviews, 39(6), 2184. doi:10.1039/b912552c
Morozan, A., Jousselme, B., & Palacin, S. (2011). Low-platinum and platinum-free catalysts for the oxygen reduction reaction at fuel cell cathodes. Energy & Environmental Science, 4(4), 1238. doi:10.1039/c0ee00601g
Kuttiyiel, K. A., Sasaki, K., Choi, Y., Su, D., Liu, P., & Adzic, R. R. (2012). Bimetallic IrNi core platinum monolayer shell electrocatalysts for the oxygen reduction reaction. Energy Environ. Sci., 5(1), 5297-5304. doi:10.1039/c1ee02067f
[+]
Bing, Y., Liu, H., Zhang, L., Ghosh, D., & Zhang, J. (2010). Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction. Chemical Society Reviews, 39(6), 2184. doi:10.1039/b912552c
Morozan, A., Jousselme, B., & Palacin, S. (2011). Low-platinum and platinum-free catalysts for the oxygen reduction reaction at fuel cell cathodes. Energy & Environmental Science, 4(4), 1238. doi:10.1039/c0ee00601g
Kuttiyiel, K. A., Sasaki, K., Choi, Y., Su, D., Liu, P., & Adzic, R. R. (2012). Bimetallic IrNi core platinum monolayer shell electrocatalysts for the oxygen reduction reaction. Energy Environ. Sci., 5(1), 5297-5304. doi:10.1039/c1ee02067f
Stephens, I. E. L., Bondarenko, A. S., Grønbjerg, U., Rossmeisl, J., & Chorkendorff, I. (2012). Understanding the electrocatalysis of oxygen reduction on platinum and its alloys. Energy & Environmental Science, 5(5), 6744. doi:10.1039/c2ee03590a
Kinumoto, T., Inaba, M., Nakayama, Y., Ogata, K., Umebayashi, R., Tasaka, A., … Ogumi, Z. (2006). Durability of perfluorinated ionomer membrane against hydrogen peroxide. Journal of Power Sources, 158(2), 1222-1228. doi:10.1016/j.jpowsour.2005.10.043
Briega-Martos, V., Ferre-Vilaplana, A., de la Peña, A., Segura, J. L., Zamora, F., Feliu, J. M., & Herrero, E. (2016). An Aza-Fused π-Conjugated Microporous Framework Catalyzes the Production of Hydrogen Peroxide. ACS Catalysis, 7(2), 1015-1024. doi:10.1021/acscatal.6b03043
Gong, K., Du, F., Xia, Z., Durstock, M., & Dai, L. (2009). Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction. Science, 323(5915), 760-764. doi:10.1126/science.1168049
Qu, L., Liu, Y., Baek, J.-B., & Dai, L. (2010). Nitrogen-Doped Graphene as Efficient Metal-Free Electrocatalyst for Oxygen Reduction in Fuel Cells. ACS Nano, 4(3), 1321-1326. doi:10.1021/nn901850u
Yang, L., Shui, J., Du, L., Shao, Y., Liu, J., Dai, L., & Hu, Z. (2019). Carbon‐Based Metal‐Free ORR Electrocatalysts for Fuel Cells: Past, Present, and Future. Advanced Materials, 31(13), 1804799. doi:10.1002/adma.201804799
Singh, S. K., Takeyasu, K., & Nakamura, J. (2018). Active Sites and Mechanism of Oxygen Reduction Reaction Electrocatalysis on Nitrogen-Doped Carbon Materials. Advanced Materials, 31(13), 1804297. doi:10.1002/adma.201804297
Kong, X.-K., Chen, C.-L., & Chen, Q.-W. (2014). Doped graphene for metal-free catalysis. Chem. Soc. Rev., 43(8), 2841-2857. doi:10.1039/c3cs60401b
Navalon, S., Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2014). Carbocatalysis by Graphene-Based Materials. Chemical Reviews, 114(12), 6179-6212. doi:10.1021/cr4007347
Dai, L., Xue, Y., Qu, L., Choi, H.-J., & Baek, J.-B. (2015). Metal-Free Catalysts for Oxygen Reduction Reaction. Chemical Reviews, 115(11), 4823-4892. doi:10.1021/cr5003563
Wang, H., Maiyalagan, T., & Wang, X. (2012). Review on Recent Progress in Nitrogen-Doped Graphene: Synthesis, Characterization, and Its Potential Applications. ACS Catalysis, 2(5), 781-794. doi:10.1021/cs200652y
Lai, L., Potts, J. R., Zhan, D., Wang, L., Poh, C. K., Tang, C., … Ruoff, R. S. (2012). Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energy & Environmental Science, 5(7), 7936. doi:10.1039/c2ee21802j
Guo, D., Shibuya, R., Akiba, C., Saji, S., Kondo, T., & Nakamura, J. (2016). Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science, 351(6271), 361-365. doi:10.1126/science.aad0832
Mamtani, K., Jain, D., Zemlyanov, D., Celik, G., Luthman, J., Renkes, G., … Ozkan, U. S. (2016). Probing the Oxygen Reduction Reaction Active Sites over Nitrogen-Doped Carbon Nanostructures (CNx) in Acidic Media Using Phosphate Anion. ACS Catalysis, 6(10), 7249-7259. doi:10.1021/acscatal.6b01786
Rao, C. V., Cabrera, C. R., & Ishikawa, Y. (2010). In Search of the Active Site in Nitrogen-Doped Carbon Nanotube Electrodes for the Oxygen Reduction Reaction. The Journal of Physical Chemistry Letters, 1(18), 2622-2627. doi:10.1021/jz100971v
Sheng, Z.-H., Shao, L., Chen, J.-J., Bao, W.-J., Wang, F.-B., & Xia, X.-H. (2011). Catalyst-Free Synthesis of Nitrogen-Doped Graphene via Thermal Annealing Graphite Oxide with Melamine and Its Excellent Electrocatalysis. ACS Nano, 5(6), 4350-4358. doi:10.1021/nn103584t
Xing, T., Zheng, Y., Li, L. H., Cowie, B. C. C., Gunzelmann, D., Qiao, S. Z., … Chen, Y. (2014). Observation of Active Sites for Oxygen Reduction Reaction on Nitrogen-Doped Multilayer Graphene. ACS Nano, 8(7), 6856-6862. doi:10.1021/nn501506p
Zhang, C., Hao, R., Liao, H., & Hou, Y. (2013). Synthesis of amino-functionalized graphene as metal-free catalyst and exploration of the roles of various nitrogen states in oxygen reduction reaction. Nano Energy, 2(1), 88-97. doi:10.1016/j.nanoen.2012.07.021
Feng, Y., Li, F., Hu, Z., Luo, X., Zhang, L., Zhou, X.-F., … Wang, E. G. (2012). Tuning the catalytic property of nitrogen-doped graphene for cathode oxygen reduction reaction. Physical Review B, 85(15). doi:10.1103/physrevb.85.155454
Ratso, S., Kruusenberg, I., Käärik, M., Kook, M., Saar, R., Pärs, M., … Tammeveski, K. (2017). Highly efficient nitrogen-doped carbide-derived carbon materials for oxygen reduction reaction in alkaline media. Carbon, 113, 159-169. doi:10.1016/j.carbon.2016.11.037
Okamoto, Y. (2009). First-principles molecular dynamics simulation of O2 reduction on nitrogen-doped carbon. Applied Surface Science, 256(1), 335-341. doi:10.1016/j.apsusc.2009.08.027
Ikeda, T., Boero, M., Huang, S.-F., Terakura, K., Oshima, M., & Ozaki, J. (2008). Carbon Alloy Catalysts: Active Sites for Oxygen Reduction Reaction. The Journal of Physical Chemistry C, 112(38), 14706-14709. doi:10.1021/jp806084d
Kwak, D., Khetan, A., Noh, S., Pitsch, H., & Han, B. (2014). First Principles Study of Morphology, Doping Level, and Water Solvation Effects on the Catalytic Mechanism of Nitrogen-Doped Graphene in the Oxygen Reduction Reaction. ChemCatChem, 6(9), 2662-2670. doi:10.1002/cctc.201402248
Chai, G.-L., Hou, Z., Shu, D.-J., Ikeda, T., & Terakura, K. (2014). Active Sites and Mechanisms for Oxygen Reduction Reaction on Nitrogen-Doped Carbon Alloy Catalysts: Stone–Wales Defect and Curvature Effect. Journal of the American Chemical Society, 136(39), 13629-13640. doi:10.1021/ja502646c
Matanovic, I., Artyushkova, K., & Atanassov, P. (2018). Understanding PGM-free catalysts by linking density functional theory calculations and structural analysis: Perspectives and challenges. Current Opinion in Electrochemistry, 9, 137-144. doi:10.1016/j.coelec.2018.03.009
Matanovic, I., Artyushkova, K., Strand, M. B., Dzara, M. J., Pylypenko, S., & Atanassov, P. (2016). Core Level Shifts of Hydrogenated Pyridinic and Pyrrolic Nitrogen in the Nitrogen-Containing Graphene-Based Electrocatalysts: In-Plane vs Edge Defects. The Journal of Physical Chemistry C, 120(51), 29225-29232. doi:10.1021/acs.jpcc.6b09778
Sarapuu, A., Kibena-Põldsepp, E., Borghei, M., & Tammeveski, K. (2018). Electrocatalysis of oxygen reduction on heteroatom-doped nanocarbons and transition metal–nitrogen–carbon catalysts for alkaline membrane fuel cells. Journal of Materials Chemistry A, 6(3), 776-804. doi:10.1039/c7ta08690c
Lv, R., Li, Q., Botello-Méndez, A. R., Hayashi, T., Wang, B., Berkdemir, A., … Terrones, M. (2012). Nitrogen-doped graphene: beyond single substitution and enhanced molecular sensing. Scientific Reports, 2(1). doi:10.1038/srep00586
Ferre-Vilaplana, A., & Herrero, E. (2015). Charge transfer, bonding conditioning and solvation effect in the activation of the oxygen reduction reaction on unclustered graphitic-nitrogen-doped graphene. Physical Chemistry Chemical Physics, 17(25), 16238-16242. doi:10.1039/c5cp00918a
Kurak, K. A., & Anderson, A. B. (2009). Nitrogen-Treated Graphite and Oxygen Electroreduction on Pyridinic Edge Sites. The Journal of Physical Chemistry C, 113(16), 6730-6734. doi:10.1021/jp811518e
Delley, B. (1990). An all‐electron numerical method for solving the local density functional for polyatomic molecules. The Journal of Chemical Physics, 92(1), 508-517. doi:10.1063/1.458452
Delley, B. (2000). From molecules to solids with the DMol3 approach. The Journal of Chemical Physics, 113(18), 7756-7764. doi:10.1063/1.1316015
Delley, B. (2006). The conductor-like screening model for polymers and surfaces. Molecular Simulation, 32(2), 117-123. doi:10.1080/08927020600589684
Tkatchenko, A., & Scheffler, M. (2009). Accurate Molecular Van Der Waals Interactions from Ground-State Electron Density and Free-Atom Reference Data. Physical Review Letters, 102(7). doi:10.1103/physrevlett.102.073005
Neugebauer, J., & Scheffler, M. (1992). Adsorbate-substrate and adsorbate-adsorbate interactions of Na and K adlayers on Al(111). Physical Review B, 46(24), 16067-16080. doi:10.1103/physrevb.46.16067
Nørskov, J. K., Rossmeisl, J., Logadottir, A., Lindqvist, L., Kitchin, J. R., Bligaard, T., & Jónsson, H. (2004). Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. The Journal of Physical Chemistry B, 108(46), 17886-17892. doi:10.1021/jp047349j
Costentin, C., Robert, M., & Savéant, J.-M. (2006). Electrochemical concerted proton and electron transfers. Potential-dependent rate constant, reorganization factors, proton tunneling and isotope effects. Journal of Electroanalytical Chemistry, 588(2), 197-206. doi:10.1016/j.jelechem.2005.12.027
Koper, M. T. M. (2013). Theory of the transition from sequential to concerted electrochemical proton–electron transfer. Phys. Chem. Chem. Phys., 15(5), 1399-1407. doi:10.1039/c2cp42369c
Jiao, Y., Zheng, Y., Jaroniec, M., & Qiao, S. Z. (2014). Origin of the Electrocatalytic Oxygen Reduction Activity of Graphene-Based Catalysts: A Roadmap to Achieve the Best Performance. Journal of the American Chemical Society, 136(11), 4394-4403. doi:10.1021/ja500432h
Busch, M., Halck, N. B., Kramm, U. I., Siahrostami, S., Krtil, P., & Rossmeisl, J. (2016). Beyond the top of the volcano? – A unified approach to electrocatalytic oxygen reduction and oxygen evolution. Nano Energy, 29, 126-135. doi:10.1016/j.nanoen.2016.04.011
Yasuda, S., Yu, L., Kim, J., & Murakoshi, K. (2013). Selective nitrogen doping in graphene for oxygen reduction reactions. Chemical Communications, 49(83), 9627. doi:10.1039/c3cc45641b
Zheng, B., Cai, X.-L., Zhou, Y., & Xia, X.-H. (2016). Pure Pyridinic Nitrogen-Doped Single-Layer Graphene Catalyzes Two-Electron Transfer Process of Oxygen Reduction Reaction. ChemElectroChem, 3(12), 2036-2042. doi:10.1002/celc.201600130
Zhao, L., He, R., Rim, K. T., Schiros, T., Kim, K. S., Zhou, H., … Pasupathy, A. N. (2011). Visualizing Individual Nitrogen Dopants in Monolayer Graphene. Science, 333(6045), 999-1003. doi:10.1126/science.1208759
Choi, C. H., Lim, H.-K., Chung, M. W., Park, J. C., Shin, H., Kim, H., & Woo, S. I. (2014). Long-Range Electron Transfer over Graphene-Based Catalyst for High-Performing Oxygen Reduction Reactions: Importance of Size, N-doping, and Metallic Impurities. Journal of the American Chemical Society, 136(25), 9070-9077. doi:10.1021/ja5033474
[-]