Mostrar el registro sencillo del ítem
dc.contributor.author | Ferre Vilaplana, Adolfo | es_ES |
dc.contributor.author | Herrero, Enrique | es_ES |
dc.date.accessioned | 2021-02-04T04:32:04Z | |
dc.date.available | 2021-02-04T04:32:04Z | |
dc.date.issued | 2019-09-01 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/160679 | |
dc.description.abstract | [EN] Nitrogen-doped graphitic materials as promising catalysts for the oxygen reduction reaction in fuel-cells have been mainly investigated under the graphitic versus pyridinic nitrogen-dopant dichotomy approach. However, we show here that the active sites, reaction mechanism, selectivity and even the origin of each behavior can be better understood when the stability of the possible active site and the eventual contribution of charge from the surface are considered separately. The roles in the reaction played by specific nitrogen-dopants, the hydrogenation of pyridinic nitrogen-dopants and the solvation effect are all clarified. The investigated activity is much more closely linked to the edges, where certain carbon atoms are sufficiently unstable or can be destabilized by means of adjacent nitrogen-dopants, and where reaction intermediates can be better relaxed, than to the presence of specific nitrogen-dopants. Unfortunately, high overpotentials and the undesired production of hydrogen peroxide appear to be unavoidable in the oxygen reduction to water on these materials. | es_ES |
dc.description.sponsorship | This work has been financially supported by the MINECO (Spain) project No. CTQ2016-76221-P | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Royal Society of Chemistry | es_ES |
dc.relation.ispartof | Sustainable Energy & Fuels | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.title | Why nitrogen favors oxygen reduction on graphitic materials | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1039/c9se00262f | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CTQ2016-76221-P/ES/ESTRUCTURA INTERFACIAL Y REACTIVIDAD ELECTROQUIMICA/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.description.bibliographicCitation | Ferre Vilaplana, A.; Herrero, E. (2019). Why nitrogen favors oxygen reduction on graphitic materials. Sustainable Energy & Fuels. 3(9):2391-2398. https://doi.org/10.1039/c9se00262f | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1039/c9se00262f | es_ES |
dc.description.upvformatpinicio | 2391 | es_ES |
dc.description.upvformatpfin | 2398 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 3 | es_ES |
dc.description.issue | 9 | es_ES |
dc.identifier.eissn | 2398-4902 | es_ES |
dc.relation.pasarela | S\394474 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Bing, Y., Liu, H., Zhang, L., Ghosh, D., & Zhang, J. (2010). Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction. Chemical Society Reviews, 39(6), 2184. doi:10.1039/b912552c | es_ES |
dc.description.references | Morozan, A., Jousselme, B., & Palacin, S. (2011). Low-platinum and platinum-free catalysts for the oxygen reduction reaction at fuel cell cathodes. Energy & Environmental Science, 4(4), 1238. doi:10.1039/c0ee00601g | es_ES |
dc.description.references | Kuttiyiel, K. A., Sasaki, K., Choi, Y., Su, D., Liu, P., & Adzic, R. R. (2012). Bimetallic IrNi core platinum monolayer shell electrocatalysts for the oxygen reduction reaction. Energy Environ. Sci., 5(1), 5297-5304. doi:10.1039/c1ee02067f | es_ES |
dc.description.references | Stephens, I. E. L., Bondarenko, A. S., Grønbjerg, U., Rossmeisl, J., & Chorkendorff, I. (2012). Understanding the electrocatalysis of oxygen reduction on platinum and its alloys. Energy & Environmental Science, 5(5), 6744. doi:10.1039/c2ee03590a | es_ES |
dc.description.references | Kinumoto, T., Inaba, M., Nakayama, Y., Ogata, K., Umebayashi, R., Tasaka, A., … Ogumi, Z. (2006). Durability of perfluorinated ionomer membrane against hydrogen peroxide. Journal of Power Sources, 158(2), 1222-1228. doi:10.1016/j.jpowsour.2005.10.043 | es_ES |
dc.description.references | Briega-Martos, V., Ferre-Vilaplana, A., de la Peña, A., Segura, J. L., Zamora, F., Feliu, J. M., & Herrero, E. (2016). An Aza-Fused π-Conjugated Microporous Framework Catalyzes the Production of Hydrogen Peroxide. ACS Catalysis, 7(2), 1015-1024. doi:10.1021/acscatal.6b03043 | es_ES |
dc.description.references | Gong, K., Du, F., Xia, Z., Durstock, M., & Dai, L. (2009). Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction. Science, 323(5915), 760-764. doi:10.1126/science.1168049 | es_ES |
dc.description.references | Qu, L., Liu, Y., Baek, J.-B., & Dai, L. (2010). Nitrogen-Doped Graphene as Efficient Metal-Free Electrocatalyst for Oxygen Reduction in Fuel Cells. ACS Nano, 4(3), 1321-1326. doi:10.1021/nn901850u | es_ES |
dc.description.references | Yang, L., Shui, J., Du, L., Shao, Y., Liu, J., Dai, L., & Hu, Z. (2019). Carbon‐Based Metal‐Free ORR Electrocatalysts for Fuel Cells: Past, Present, and Future. Advanced Materials, 31(13), 1804799. doi:10.1002/adma.201804799 | es_ES |
dc.description.references | Singh, S. K., Takeyasu, K., & Nakamura, J. (2018). Active Sites and Mechanism of Oxygen Reduction Reaction Electrocatalysis on Nitrogen-Doped Carbon Materials. Advanced Materials, 31(13), 1804297. doi:10.1002/adma.201804297 | es_ES |
dc.description.references | Kong, X.-K., Chen, C.-L., & Chen, Q.-W. (2014). Doped graphene for metal-free catalysis. Chem. Soc. Rev., 43(8), 2841-2857. doi:10.1039/c3cs60401b | es_ES |
dc.description.references | Navalon, S., Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2014). Carbocatalysis by Graphene-Based Materials. Chemical Reviews, 114(12), 6179-6212. doi:10.1021/cr4007347 | es_ES |
dc.description.references | Dai, L., Xue, Y., Qu, L., Choi, H.-J., & Baek, J.-B. (2015). Metal-Free Catalysts for Oxygen Reduction Reaction. Chemical Reviews, 115(11), 4823-4892. doi:10.1021/cr5003563 | es_ES |
dc.description.references | Wang, H., Maiyalagan, T., & Wang, X. (2012). Review on Recent Progress in Nitrogen-Doped Graphene: Synthesis, Characterization, and Its Potential Applications. ACS Catalysis, 2(5), 781-794. doi:10.1021/cs200652y | es_ES |
dc.description.references | Lai, L., Potts, J. R., Zhan, D., Wang, L., Poh, C. K., Tang, C., … Ruoff, R. S. (2012). Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energy & Environmental Science, 5(7), 7936. doi:10.1039/c2ee21802j | es_ES |
dc.description.references | Guo, D., Shibuya, R., Akiba, C., Saji, S., Kondo, T., & Nakamura, J. (2016). Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science, 351(6271), 361-365. doi:10.1126/science.aad0832 | es_ES |
dc.description.references | Mamtani, K., Jain, D., Zemlyanov, D., Celik, G., Luthman, J., Renkes, G., … Ozkan, U. S. (2016). Probing the Oxygen Reduction Reaction Active Sites over Nitrogen-Doped Carbon Nanostructures (CNx) in Acidic Media Using Phosphate Anion. ACS Catalysis, 6(10), 7249-7259. doi:10.1021/acscatal.6b01786 | es_ES |
dc.description.references | Rao, C. V., Cabrera, C. R., & Ishikawa, Y. (2010). In Search of the Active Site in Nitrogen-Doped Carbon Nanotube Electrodes for the Oxygen Reduction Reaction. The Journal of Physical Chemistry Letters, 1(18), 2622-2627. doi:10.1021/jz100971v | es_ES |
dc.description.references | Sheng, Z.-H., Shao, L., Chen, J.-J., Bao, W.-J., Wang, F.-B., & Xia, X.-H. (2011). Catalyst-Free Synthesis of Nitrogen-Doped Graphene via Thermal Annealing Graphite Oxide with Melamine and Its Excellent Electrocatalysis. ACS Nano, 5(6), 4350-4358. doi:10.1021/nn103584t | es_ES |
dc.description.references | Xing, T., Zheng, Y., Li, L. H., Cowie, B. C. C., Gunzelmann, D., Qiao, S. Z., … Chen, Y. (2014). Observation of Active Sites for Oxygen Reduction Reaction on Nitrogen-Doped Multilayer Graphene. ACS Nano, 8(7), 6856-6862. doi:10.1021/nn501506p | es_ES |
dc.description.references | Zhang, C., Hao, R., Liao, H., & Hou, Y. (2013). Synthesis of amino-functionalized graphene as metal-free catalyst and exploration of the roles of various nitrogen states in oxygen reduction reaction. Nano Energy, 2(1), 88-97. doi:10.1016/j.nanoen.2012.07.021 | es_ES |
dc.description.references | Feng, Y., Li, F., Hu, Z., Luo, X., Zhang, L., Zhou, X.-F., … Wang, E. G. (2012). Tuning the catalytic property of nitrogen-doped graphene for cathode oxygen reduction reaction. Physical Review B, 85(15). doi:10.1103/physrevb.85.155454 | es_ES |
dc.description.references | Ratso, S., Kruusenberg, I., Käärik, M., Kook, M., Saar, R., Pärs, M., … Tammeveski, K. (2017). Highly efficient nitrogen-doped carbide-derived carbon materials for oxygen reduction reaction in alkaline media. Carbon, 113, 159-169. doi:10.1016/j.carbon.2016.11.037 | es_ES |
dc.description.references | Okamoto, Y. (2009). First-principles molecular dynamics simulation of O2 reduction on nitrogen-doped carbon. Applied Surface Science, 256(1), 335-341. doi:10.1016/j.apsusc.2009.08.027 | es_ES |
dc.description.references | Ikeda, T., Boero, M., Huang, S.-F., Terakura, K., Oshima, M., & Ozaki, J. (2008). Carbon Alloy Catalysts: Active Sites for Oxygen Reduction Reaction. The Journal of Physical Chemistry C, 112(38), 14706-14709. doi:10.1021/jp806084d | es_ES |
dc.description.references | Kwak, D., Khetan, A., Noh, S., Pitsch, H., & Han, B. (2014). First Principles Study of Morphology, Doping Level, and Water Solvation Effects on the Catalytic Mechanism of Nitrogen-Doped Graphene in the Oxygen Reduction Reaction. ChemCatChem, 6(9), 2662-2670. doi:10.1002/cctc.201402248 | es_ES |
dc.description.references | Chai, G.-L., Hou, Z., Shu, D.-J., Ikeda, T., & Terakura, K. (2014). Active Sites and Mechanisms for Oxygen Reduction Reaction on Nitrogen-Doped Carbon Alloy Catalysts: Stone–Wales Defect and Curvature Effect. Journal of the American Chemical Society, 136(39), 13629-13640. doi:10.1021/ja502646c | es_ES |
dc.description.references | Matanovic, I., Artyushkova, K., & Atanassov, P. (2018). Understanding PGM-free catalysts by linking density functional theory calculations and structural analysis: Perspectives and challenges. Current Opinion in Electrochemistry, 9, 137-144. doi:10.1016/j.coelec.2018.03.009 | es_ES |
dc.description.references | Matanovic, I., Artyushkova, K., Strand, M. B., Dzara, M. J., Pylypenko, S., & Atanassov, P. (2016). Core Level Shifts of Hydrogenated Pyridinic and Pyrrolic Nitrogen in the Nitrogen-Containing Graphene-Based Electrocatalysts: In-Plane vs Edge Defects. The Journal of Physical Chemistry C, 120(51), 29225-29232. doi:10.1021/acs.jpcc.6b09778 | es_ES |
dc.description.references | Sarapuu, A., Kibena-Põldsepp, E., Borghei, M., & Tammeveski, K. (2018). Electrocatalysis of oxygen reduction on heteroatom-doped nanocarbons and transition metal–nitrogen–carbon catalysts for alkaline membrane fuel cells. Journal of Materials Chemistry A, 6(3), 776-804. doi:10.1039/c7ta08690c | es_ES |
dc.description.references | Lv, R., Li, Q., Botello-Méndez, A. R., Hayashi, T., Wang, B., Berkdemir, A., … Terrones, M. (2012). Nitrogen-doped graphene: beyond single substitution and enhanced molecular sensing. Scientific Reports, 2(1). doi:10.1038/srep00586 | es_ES |
dc.description.references | Ferre-Vilaplana, A., & Herrero, E. (2015). Charge transfer, bonding conditioning and solvation effect in the activation of the oxygen reduction reaction on unclustered graphitic-nitrogen-doped graphene. Physical Chemistry Chemical Physics, 17(25), 16238-16242. doi:10.1039/c5cp00918a | es_ES |
dc.description.references | Kurak, K. A., & Anderson, A. B. (2009). Nitrogen-Treated Graphite and Oxygen Electroreduction on Pyridinic Edge Sites. The Journal of Physical Chemistry C, 113(16), 6730-6734. doi:10.1021/jp811518e | es_ES |
dc.description.references | Delley, B. (1990). An all‐electron numerical method for solving the local density functional for polyatomic molecules. The Journal of Chemical Physics, 92(1), 508-517. doi:10.1063/1.458452 | es_ES |
dc.description.references | Delley, B. (2000). From molecules to solids with the DMol3 approach. The Journal of Chemical Physics, 113(18), 7756-7764. doi:10.1063/1.1316015 | es_ES |
dc.description.references | Delley, B. (2006). The conductor-like screening model for polymers and surfaces. Molecular Simulation, 32(2), 117-123. doi:10.1080/08927020600589684 | es_ES |
dc.description.references | Tkatchenko, A., & Scheffler, M. (2009). Accurate Molecular Van Der Waals Interactions from Ground-State Electron Density and Free-Atom Reference Data. Physical Review Letters, 102(7). doi:10.1103/physrevlett.102.073005 | es_ES |
dc.description.references | Neugebauer, J., & Scheffler, M. (1992). Adsorbate-substrate and adsorbate-adsorbate interactions of Na and K adlayers on Al(111). Physical Review B, 46(24), 16067-16080. doi:10.1103/physrevb.46.16067 | es_ES |
dc.description.references | Nørskov, J. K., Rossmeisl, J., Logadottir, A., Lindqvist, L., Kitchin, J. R., Bligaard, T., & Jónsson, H. (2004). Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. The Journal of Physical Chemistry B, 108(46), 17886-17892. doi:10.1021/jp047349j | es_ES |
dc.description.references | Costentin, C., Robert, M., & Savéant, J.-M. (2006). Electrochemical concerted proton and electron transfers. Potential-dependent rate constant, reorganization factors, proton tunneling and isotope effects. Journal of Electroanalytical Chemistry, 588(2), 197-206. doi:10.1016/j.jelechem.2005.12.027 | es_ES |
dc.description.references | Koper, M. T. M. (2013). Theory of the transition from sequential to concerted electrochemical proton–electron transfer. Phys. Chem. Chem. Phys., 15(5), 1399-1407. doi:10.1039/c2cp42369c | es_ES |
dc.description.references | Jiao, Y., Zheng, Y., Jaroniec, M., & Qiao, S. Z. (2014). Origin of the Electrocatalytic Oxygen Reduction Activity of Graphene-Based Catalysts: A Roadmap to Achieve the Best Performance. Journal of the American Chemical Society, 136(11), 4394-4403. doi:10.1021/ja500432h | es_ES |
dc.description.references | Busch, M., Halck, N. B., Kramm, U. I., Siahrostami, S., Krtil, P., & Rossmeisl, J. (2016). Beyond the top of the volcano? – A unified approach to electrocatalytic oxygen reduction and oxygen evolution. Nano Energy, 29, 126-135. doi:10.1016/j.nanoen.2016.04.011 | es_ES |
dc.description.references | Yasuda, S., Yu, L., Kim, J., & Murakoshi, K. (2013). Selective nitrogen doping in graphene for oxygen reduction reactions. Chemical Communications, 49(83), 9627. doi:10.1039/c3cc45641b | es_ES |
dc.description.references | Zheng, B., Cai, X.-L., Zhou, Y., & Xia, X.-H. (2016). Pure Pyridinic Nitrogen-Doped Single-Layer Graphene Catalyzes Two-Electron Transfer Process of Oxygen Reduction Reaction. ChemElectroChem, 3(12), 2036-2042. doi:10.1002/celc.201600130 | es_ES |
dc.description.references | Zhao, L., He, R., Rim, K. T., Schiros, T., Kim, K. S., Zhou, H., … Pasupathy, A. N. (2011). Visualizing Individual Nitrogen Dopants in Monolayer Graphene. Science, 333(6045), 999-1003. doi:10.1126/science.1208759 | es_ES |
dc.description.references | Choi, C. H., Lim, H.-K., Chung, M. W., Park, J. C., Shin, H., Kim, H., & Woo, S. I. (2014). Long-Range Electron Transfer over Graphene-Based Catalyst for High-Performing Oxygen Reduction Reactions: Importance of Size, N-doping, and Metallic Impurities. Journal of the American Chemical Society, 136(25), 9070-9077. doi:10.1021/ja5033474 | es_ES |