- -

Why nitrogen favors oxygen reduction on graphitic materials

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Why nitrogen favors oxygen reduction on graphitic materials

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ferre Vilaplana, Adolfo es_ES
dc.contributor.author Herrero, Enrique es_ES
dc.date.accessioned 2021-02-04T04:32:04Z
dc.date.available 2021-02-04T04:32:04Z
dc.date.issued 2019-09-01 es_ES
dc.identifier.uri http://hdl.handle.net/10251/160679
dc.description.abstract [EN] Nitrogen-doped graphitic materials as promising catalysts for the oxygen reduction reaction in fuel-cells have been mainly investigated under the graphitic versus pyridinic nitrogen-dopant dichotomy approach. However, we show here that the active sites, reaction mechanism, selectivity and even the origin of each behavior can be better understood when the stability of the possible active site and the eventual contribution of charge from the surface are considered separately. The roles in the reaction played by specific nitrogen-dopants, the hydrogenation of pyridinic nitrogen-dopants and the solvation effect are all clarified. The investigated activity is much more closely linked to the edges, where certain carbon atoms are sufficiently unstable or can be destabilized by means of adjacent nitrogen-dopants, and where reaction intermediates can be better relaxed, than to the presence of specific nitrogen-dopants. Unfortunately, high overpotentials and the undesired production of hydrogen peroxide appear to be unavoidable in the oxygen reduction to water on these materials. es_ES
dc.description.sponsorship This work has been financially supported by the MINECO (Spain) project No. CTQ2016-76221-P es_ES
dc.language Inglés es_ES
dc.publisher Royal Society of Chemistry es_ES
dc.relation.ispartof Sustainable Energy & Fuels es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Why nitrogen favors oxygen reduction on graphitic materials es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c9se00262f es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2016-76221-P/ES/ESTRUCTURA INTERFACIAL Y REACTIVIDAD ELECTROQUIMICA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Ferre Vilaplana, A.; Herrero, E. (2019). Why nitrogen favors oxygen reduction on graphitic materials. Sustainable Energy & Fuels. 3(9):2391-2398. https://doi.org/10.1039/c9se00262f es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/c9se00262f es_ES
dc.description.upvformatpinicio 2391 es_ES
dc.description.upvformatpfin 2398 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 3 es_ES
dc.description.issue 9 es_ES
dc.identifier.eissn 2398-4902 es_ES
dc.relation.pasarela S\394474 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Bing, Y., Liu, H., Zhang, L., Ghosh, D., & Zhang, J. (2010). Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction. Chemical Society Reviews, 39(6), 2184. doi:10.1039/b912552c es_ES
dc.description.references Morozan, A., Jousselme, B., & Palacin, S. (2011). Low-platinum and platinum-free catalysts for the oxygen reduction reaction at fuel cell cathodes. Energy & Environmental Science, 4(4), 1238. doi:10.1039/c0ee00601g es_ES
dc.description.references Kuttiyiel, K. A., Sasaki, K., Choi, Y., Su, D., Liu, P., & Adzic, R. R. (2012). Bimetallic IrNi core platinum monolayer shell electrocatalysts for the oxygen reduction reaction. Energy Environ. Sci., 5(1), 5297-5304. doi:10.1039/c1ee02067f es_ES
dc.description.references Stephens, I. E. L., Bondarenko, A. S., Grønbjerg, U., Rossmeisl, J., & Chorkendorff, I. (2012). Understanding the electrocatalysis of oxygen reduction on platinum and its alloys. Energy & Environmental Science, 5(5), 6744. doi:10.1039/c2ee03590a es_ES
dc.description.references Kinumoto, T., Inaba, M., Nakayama, Y., Ogata, K., Umebayashi, R., Tasaka, A., … Ogumi, Z. (2006). Durability of perfluorinated ionomer membrane against hydrogen peroxide. Journal of Power Sources, 158(2), 1222-1228. doi:10.1016/j.jpowsour.2005.10.043 es_ES
dc.description.references Briega-Martos, V., Ferre-Vilaplana, A., de la Peña, A., Segura, J. L., Zamora, F., Feliu, J. M., & Herrero, E. (2016). An Aza-Fused π-Conjugated Microporous Framework Catalyzes the Production of Hydrogen Peroxide. ACS Catalysis, 7(2), 1015-1024. doi:10.1021/acscatal.6b03043 es_ES
dc.description.references Gong, K., Du, F., Xia, Z., Durstock, M., & Dai, L. (2009). Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction. Science, 323(5915), 760-764. doi:10.1126/science.1168049 es_ES
dc.description.references Qu, L., Liu, Y., Baek, J.-B., & Dai, L. (2010). Nitrogen-Doped Graphene as Efficient Metal-Free Electrocatalyst for Oxygen Reduction in Fuel Cells. ACS Nano, 4(3), 1321-1326. doi:10.1021/nn901850u es_ES
dc.description.references Yang, L., Shui, J., Du, L., Shao, Y., Liu, J., Dai, L., & Hu, Z. (2019). Carbon‐Based Metal‐Free ORR Electrocatalysts for Fuel Cells: Past, Present, and Future. Advanced Materials, 31(13), 1804799. doi:10.1002/adma.201804799 es_ES
dc.description.references Singh, S. K., Takeyasu, K., & Nakamura, J. (2018). Active Sites and Mechanism of Oxygen Reduction Reaction Electrocatalysis on Nitrogen-Doped Carbon Materials. Advanced Materials, 31(13), 1804297. doi:10.1002/adma.201804297 es_ES
dc.description.references Kong, X.-K., Chen, C.-L., & Chen, Q.-W. (2014). Doped graphene for metal-free catalysis. Chem. Soc. Rev., 43(8), 2841-2857. doi:10.1039/c3cs60401b es_ES
dc.description.references Navalon, S., Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2014). Carbocatalysis by Graphene-Based Materials. Chemical Reviews, 114(12), 6179-6212. doi:10.1021/cr4007347 es_ES
dc.description.references Dai, L., Xue, Y., Qu, L., Choi, H.-J., & Baek, J.-B. (2015). Metal-Free Catalysts for Oxygen Reduction Reaction. Chemical Reviews, 115(11), 4823-4892. doi:10.1021/cr5003563 es_ES
dc.description.references Wang, H., Maiyalagan, T., & Wang, X. (2012). Review on Recent Progress in Nitrogen-Doped Graphene: Synthesis, Characterization, and Its Potential Applications. ACS Catalysis, 2(5), 781-794. doi:10.1021/cs200652y es_ES
dc.description.references Lai, L., Potts, J. R., Zhan, D., Wang, L., Poh, C. K., Tang, C., … Ruoff, R. S. (2012). Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energy & Environmental Science, 5(7), 7936. doi:10.1039/c2ee21802j es_ES
dc.description.references Guo, D., Shibuya, R., Akiba, C., Saji, S., Kondo, T., & Nakamura, J. (2016). Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science, 351(6271), 361-365. doi:10.1126/science.aad0832 es_ES
dc.description.references Mamtani, K., Jain, D., Zemlyanov, D., Celik, G., Luthman, J., Renkes, G., … Ozkan, U. S. (2016). Probing the Oxygen Reduction Reaction Active Sites over Nitrogen-Doped Carbon Nanostructures (CNx) in Acidic Media Using Phosphate Anion. ACS Catalysis, 6(10), 7249-7259. doi:10.1021/acscatal.6b01786 es_ES
dc.description.references Rao, C. V., Cabrera, C. R., & Ishikawa, Y. (2010). In Search of the Active Site in Nitrogen-Doped Carbon Nanotube Electrodes for the Oxygen Reduction Reaction. The Journal of Physical Chemistry Letters, 1(18), 2622-2627. doi:10.1021/jz100971v es_ES
dc.description.references Sheng, Z.-H., Shao, L., Chen, J.-J., Bao, W.-J., Wang, F.-B., & Xia, X.-H. (2011). Catalyst-Free Synthesis of Nitrogen-Doped Graphene via Thermal Annealing Graphite Oxide with Melamine and Its Excellent Electrocatalysis. ACS Nano, 5(6), 4350-4358. doi:10.1021/nn103584t es_ES
dc.description.references Xing, T., Zheng, Y., Li, L. H., Cowie, B. C. C., Gunzelmann, D., Qiao, S. Z., … Chen, Y. (2014). Observation of Active Sites for Oxygen Reduction Reaction on Nitrogen-Doped Multilayer Graphene. ACS Nano, 8(7), 6856-6862. doi:10.1021/nn501506p es_ES
dc.description.references Zhang, C., Hao, R., Liao, H., & Hou, Y. (2013). Synthesis of amino-functionalized graphene as metal-free catalyst and exploration of the roles of various nitrogen states in oxygen reduction reaction. Nano Energy, 2(1), 88-97. doi:10.1016/j.nanoen.2012.07.021 es_ES
dc.description.references Feng, Y., Li, F., Hu, Z., Luo, X., Zhang, L., Zhou, X.-F., … Wang, E. G. (2012). Tuning the catalytic property of nitrogen-doped graphene for cathode oxygen reduction reaction. Physical Review B, 85(15). doi:10.1103/physrevb.85.155454 es_ES
dc.description.references Ratso, S., Kruusenberg, I., Käärik, M., Kook, M., Saar, R., Pärs, M., … Tammeveski, K. (2017). Highly efficient nitrogen-doped carbide-derived carbon materials for oxygen reduction reaction in alkaline media. Carbon, 113, 159-169. doi:10.1016/j.carbon.2016.11.037 es_ES
dc.description.references Okamoto, Y. (2009). First-principles molecular dynamics simulation of O2 reduction on nitrogen-doped carbon. Applied Surface Science, 256(1), 335-341. doi:10.1016/j.apsusc.2009.08.027 es_ES
dc.description.references Ikeda, T., Boero, M., Huang, S.-F., Terakura, K., Oshima, M., & Ozaki, J. (2008). Carbon Alloy Catalysts: Active Sites for Oxygen Reduction Reaction. The Journal of Physical Chemistry C, 112(38), 14706-14709. doi:10.1021/jp806084d es_ES
dc.description.references Kwak, D., Khetan, A., Noh, S., Pitsch, H., & Han, B. (2014). First Principles Study of Morphology, Doping Level, and Water Solvation Effects on the Catalytic Mechanism of Nitrogen-Doped Graphene in the Oxygen Reduction Reaction. ChemCatChem, 6(9), 2662-2670. doi:10.1002/cctc.201402248 es_ES
dc.description.references Chai, G.-L., Hou, Z., Shu, D.-J., Ikeda, T., & Terakura, K. (2014). Active Sites and Mechanisms for Oxygen Reduction Reaction on Nitrogen-Doped Carbon Alloy Catalysts: Stone–Wales Defect and Curvature Effect. Journal of the American Chemical Society, 136(39), 13629-13640. doi:10.1021/ja502646c es_ES
dc.description.references Matanovic, I., Artyushkova, K., & Atanassov, P. (2018). Understanding PGM-free catalysts by linking density functional theory calculations and structural analysis: Perspectives and challenges. Current Opinion in Electrochemistry, 9, 137-144. doi:10.1016/j.coelec.2018.03.009 es_ES
dc.description.references Matanovic, I., Artyushkova, K., Strand, M. B., Dzara, M. J., Pylypenko, S., & Atanassov, P. (2016). Core Level Shifts of Hydrogenated Pyridinic and Pyrrolic Nitrogen in the Nitrogen-Containing Graphene-Based Electrocatalysts: In-Plane vs Edge Defects. The Journal of Physical Chemistry C, 120(51), 29225-29232. doi:10.1021/acs.jpcc.6b09778 es_ES
dc.description.references Sarapuu, A., Kibena-Põldsepp, E., Borghei, M., & Tammeveski, K. (2018). Electrocatalysis of oxygen reduction on heteroatom-doped nanocarbons and transition metal–nitrogen–carbon catalysts for alkaline membrane fuel cells. Journal of Materials Chemistry A, 6(3), 776-804. doi:10.1039/c7ta08690c es_ES
dc.description.references Lv, R., Li, Q., Botello-Méndez, A. R., Hayashi, T., Wang, B., Berkdemir, A., … Terrones, M. (2012). Nitrogen-doped graphene: beyond single substitution and enhanced molecular sensing. Scientific Reports, 2(1). doi:10.1038/srep00586 es_ES
dc.description.references Ferre-Vilaplana, A., & Herrero, E. (2015). Charge transfer, bonding conditioning and solvation effect in the activation of the oxygen reduction reaction on unclustered graphitic-nitrogen-doped graphene. Physical Chemistry Chemical Physics, 17(25), 16238-16242. doi:10.1039/c5cp00918a es_ES
dc.description.references Kurak, K. A., & Anderson, A. B. (2009). Nitrogen-Treated Graphite and Oxygen Electroreduction on Pyridinic Edge Sites. The Journal of Physical Chemistry C, 113(16), 6730-6734. doi:10.1021/jp811518e es_ES
dc.description.references Delley, B. (1990). An all‐electron numerical method for solving the local density functional for polyatomic molecules. The Journal of Chemical Physics, 92(1), 508-517. doi:10.1063/1.458452 es_ES
dc.description.references Delley, B. (2000). From molecules to solids with the DMol3 approach. The Journal of Chemical Physics, 113(18), 7756-7764. doi:10.1063/1.1316015 es_ES
dc.description.references Delley, B. (2006). The conductor-like screening model for polymers and surfaces. Molecular Simulation, 32(2), 117-123. doi:10.1080/08927020600589684 es_ES
dc.description.references Tkatchenko, A., & Scheffler, M. (2009). Accurate Molecular Van Der Waals Interactions from Ground-State Electron Density and Free-Atom Reference Data. Physical Review Letters, 102(7). doi:10.1103/physrevlett.102.073005 es_ES
dc.description.references Neugebauer, J., & Scheffler, M. (1992). Adsorbate-substrate and adsorbate-adsorbate interactions of Na and K adlayers on Al(111). Physical Review B, 46(24), 16067-16080. doi:10.1103/physrevb.46.16067 es_ES
dc.description.references Nørskov, J. K., Rossmeisl, J., Logadottir, A., Lindqvist, L., Kitchin, J. R., Bligaard, T., & Jónsson, H. (2004). Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. The Journal of Physical Chemistry B, 108(46), 17886-17892. doi:10.1021/jp047349j es_ES
dc.description.references Costentin, C., Robert, M., & Savéant, J.-M. (2006). Electrochemical concerted proton and electron transfers. Potential-dependent rate constant, reorganization factors, proton tunneling and isotope effects. Journal of Electroanalytical Chemistry, 588(2), 197-206. doi:10.1016/j.jelechem.2005.12.027 es_ES
dc.description.references Koper, M. T. M. (2013). Theory of the transition from sequential to concerted electrochemical proton–electron transfer. Phys. Chem. Chem. Phys., 15(5), 1399-1407. doi:10.1039/c2cp42369c es_ES
dc.description.references Jiao, Y., Zheng, Y., Jaroniec, M., & Qiao, S. Z. (2014). Origin of the Electrocatalytic Oxygen Reduction Activity of Graphene-Based Catalysts: A Roadmap to Achieve the Best Performance. Journal of the American Chemical Society, 136(11), 4394-4403. doi:10.1021/ja500432h es_ES
dc.description.references Busch, M., Halck, N. B., Kramm, U. I., Siahrostami, S., Krtil, P., & Rossmeisl, J. (2016). Beyond the top of the volcano? – A unified approach to electrocatalytic oxygen reduction and oxygen evolution. Nano Energy, 29, 126-135. doi:10.1016/j.nanoen.2016.04.011 es_ES
dc.description.references Yasuda, S., Yu, L., Kim, J., & Murakoshi, K. (2013). Selective nitrogen doping in graphene for oxygen reduction reactions. Chemical Communications, 49(83), 9627. doi:10.1039/c3cc45641b es_ES
dc.description.references Zheng, B., Cai, X.-L., Zhou, Y., & Xia, X.-H. (2016). Pure Pyridinic Nitrogen-Doped Single-Layer Graphene Catalyzes Two-Electron Transfer Process of Oxygen Reduction Reaction. ChemElectroChem, 3(12), 2036-2042. doi:10.1002/celc.201600130 es_ES
dc.description.references Zhao, L., He, R., Rim, K. T., Schiros, T., Kim, K. S., Zhou, H., … Pasupathy, A. N. (2011). Visualizing Individual Nitrogen Dopants in Monolayer Graphene. Science, 333(6045), 999-1003. doi:10.1126/science.1208759 es_ES
dc.description.references Choi, C. H., Lim, H.-K., Chung, M. W., Park, J. C., Shin, H., Kim, H., & Woo, S. I. (2014). Long-Range Electron Transfer over Graphene-Based Catalyst for High-Performing Oxygen Reduction Reactions: Importance of Size, N-doping, and Metallic Impurities. Journal of the American Chemical Society, 136(25), 9070-9077. doi:10.1021/ja5033474 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem