- -

A photochemical and theoretical study of the triplet reactivity of furano- and pyrano-1,4-naphthoquionones towards tyrosine and tryptophan derivatives

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A photochemical and theoretical study of the triplet reactivity of furano- and pyrano-1,4-naphthoquionones towards tyrosine and tryptophan derivatives

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Teixeira, Rodolfo I. es_ES
dc.contributor.author Goulart, Juliana S. es_ES
dc.contributor.author Correa, Rodrigo J. es_ES
dc.contributor.author Garden, Simon J. es_ES
dc.contributor.author Ferreira, Sabrina B. es_ES
dc.contributor.author Netto-Ferreira, Jose Carlos es_ES
dc.contributor.author Ferreira, Vitor F. es_ES
dc.contributor.author Miro, Paula es_ES
dc.contributor.author Marín García, Mª Luisa es_ES
dc.contributor.author Miranda Alonso, Miguel Ángel es_ES
dc.contributor.author De Lucas, Nanci C. es_ES
dc.date.accessioned 2021-02-04T04:32:10Z
dc.date.available 2021-02-04T04:32:10Z
dc.date.issued 2019 es_ES
dc.identifier.uri http://hdl.handle.net/10251/160682
dc.description.abstract [EN] The photochemical reactivity of the triplet state of pyrano- and furano-1,4-naphthoquinone derivatives ( 1 and 2) has been examined employing nanosecond laser flash photolysis. The quinone triplets were efficiently quenched by L-tryptophan methyl ester hydrochloride, L-tyrosine methyl ester hydrochloride, N-acetyl-L-tryptophan methyl ester and N-acetyl-L-tyrosine methyl ester, substituted phenols and indole ( k(q) similar to 10(9) L mol(-1) s(-1)). For all these quenchers new transients were formed in the quenching process. These were assigned to the corresponding radical pairs that resulted from a coupled electron/proton transfer from the phenols, indole, amino acids, or their esters, to the excited state of the quinone. The proton coupled electron transfer (PCET) mechanism is supported by experimental rate constants, isotopic effects and theoretical calculations. The calculations revealed differences between the hydrogen abstraction reactions of phenol and indole substrates. For the latter, the calculations indicate that electron transfer and proton transfer occur as discrete steps. es_ES
dc.description.sponsorship The authors thank the following Brazilian agencies Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES), Conselho Nacional de Desenvolvimento Cientificoe Tecnologico (CNPq) and Fundacao de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ) for financial assistance. The authors also thank the Generalitat Valenciana (Prometeo Program). es_ES
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation.ispartof RSC Advances es_ES
dc.rights Reconocimiento - No comercial (by-nc) es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title A photochemical and theoretical study of the triplet reactivity of furano- and pyrano-1,4-naphthoquionones towards tyrosine and tryptophan derivatives es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c9ra01939a es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2013%2F005/ES/ESPECIES FOTOACTIVAS Y SU INTERACCION CON BIOMOLECULAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Teixeira, RI.; Goulart, JS.; Correa, RJ.; Garden, SJ.; Ferreira, SB.; Netto-Ferreira, JC.; Ferreira, VF.... (2019). A photochemical and theoretical study of the triplet reactivity of furano- and pyrano-1,4-naphthoquionones towards tyrosine and tryptophan derivatives. RSC Advances. 9(24):13386-13397. https://doi.org/10.1039/c9ra01939a es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/c9ra01939a es_ES
dc.description.upvformatpinicio 13386 es_ES
dc.description.upvformatpfin 13397 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 24 es_ES
dc.identifier.eissn 2046-2069 es_ES
dc.relation.pasarela S\404250 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Coordenaçao de Aperfeiçoamento de Pessoal de Nível Superior, Brasil es_ES
dc.contributor.funder Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasil es_ES
dc.contributor.funder Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro es_ES
dc.description.references Sieveking, I., Thomas, P., Estévez, J. C., Quiñones, N., Cuéllar, M. A., Villena, J., … Salas, C. O. (2014). 2-Phenylaminonaphthoquinones and related compounds: Synthesis, trypanocidal and cytotoxic activities. Bioorganic & Medicinal Chemistry, 22(17), 4609-4620. doi:10.1016/j.bmc.2014.07.030 es_ES
dc.description.references Louvis, A. da R., Silva, N. A. A., Semaan, F. S., da Silva, F. de C., Saramago, G., de Souza, L. C. S. V., … Martins, D. de L. (2016). Synthesis, characterization and biological activities of 3-aryl-1,4-naphthoquinones – green palladium-catalysed Suzuki cross coupling. New Journal of Chemistry, 40(9), 7643-7656. doi:10.1039/c6nj00872k es_ES
dc.description.references Lara, L. S., Moreira, C. S., Calvet, C. M., Lechuga, G. C., Souza, R. S., Bourguignon, S. C., … Pereira, M. C. S. (2018). Efficacy of 2-hydroxy-3-phenylsulfanylmethyl-[1,4]-naphthoquinone derivatives against different Trypanosoma cruzi discrete type units: Identification of a promising hit compound. European Journal of Medicinal Chemistry, 144, 572-581. doi:10.1016/j.ejmech.2017.12.052 es_ES
dc.description.references Medeiros, C. S., Pontes-Filho, N. T., Camara, C. A., Lima-Filho, J. V., Oliveira, P. C., Lemos, S. A., … Neves, R. P. (2010). Antifungal activity of the naphthoquinone beta-lapachone against disseminated infection with Cryptococcus neoformans var. neoformans in dexamethasone-immunosuppressed Swiss mice. Brazilian Journal of Medical and Biological Research, 43(4), 345-349. doi:10.1590/s0100-879x2010007500012 es_ES
dc.description.references Riffel, A., Medina, L. F., Stefani, V., Santos, R. C., Bizani, D., & Brandelli, A. (2002). In vitro antimicrobial activity of a new series of 1,4-naphthoquinones. Brazilian Journal of Medical and Biological Research, 35(7), 811-818. doi:10.1590/s0100-879x2002000700008 es_ES
dc.description.references Santos, M. M. M., Faria, N., Iley, J., Coles, S. J., Hursthouse, M. B., Martins, M. L., & Moreira, R. (2010). Reaction of naphthoquinones with substituted nitromethanes. Facile synthesis and antifungal activity of naphtho[2,3-d]isoxazole-4,9-diones. Bioorganic & Medicinal Chemistry Letters, 20(1), 193-195. doi:10.1016/j.bmcl.2009.10.137 es_ES
dc.description.references Tandon, V. K., Maurya, H. K., Verma, M. K., Kumar, R., & Shukla, P. K. (2010). ‘On water’ assisted synthesis and biological evaluation of nitrogen and sulfur containing hetero-1,4-naphthoquinones as potent antifungal and antibacterial agents. European Journal of Medicinal Chemistry, 45(6), 2418-2426. doi:10.1016/j.ejmech.2010.02.023 es_ES
dc.description.references Sánchez-Calvo, J. M., Barbero, G. R., Guerrero-Vásquez, G., Durán, A. G., Macías, M., Rodríguez-Iglesias, M. A., … Macías, F. A. (2016). Synthesis, antibacterial and antifungal activities of naphthoquinone derivatives: a structure–activity relationship study. Medicinal Chemistry Research, 25(6), 1274-1285. doi:10.1007/s00044-016-1550-x es_ES
dc.description.references Teixeira, M. J., de Almeida, Y. M., Viana, J. R., Holanda Filha, J. G., Rodrigues, T. P., Prata, J. R. C., … Pompeu, M. M. L. (2001). In vitro andin vivo Leishmanicidal activity of 2-hydroxy-3-(3-methyl-2-butenyl)-1,4-naphthoquinone (lapachol). Phytotherapy Research, 15(1), 44-48. doi:10.1002/1099-1573(200102)15:1<44::aid-ptr685>3.0.co;2-1 es_ES
dc.description.references Tavares, G. de S. V., Mendonça, D. V. C., Lage, D. P., Granato, J. da T., Ottoni, F. M., Ludolf, F., … Coelho, E. A. F. (2018). Antileishmanial Activity, Cytotoxicity and Mechanism of Action of Clioquinol Against Leishmania infantum and Leishmania amazonensis Species. Basic & Clinical Pharmacology & Toxicology, 123(3), 236-246. doi:10.1111/bcpt.12990 es_ES
dc.description.references Naujorks, A. A. dos S., da Silva, A. O., Lopes, R. da S., de Albuquerque, S., Beatriz, A., Marques, M. R., & de Lima, D. P. (2015). Novel naphthoquinone derivatives and evaluation of their trypanocidal and leishmanicidal activities. Organic & Biomolecular Chemistry, 13(2), 428-437. doi:10.1039/c4ob01869a es_ES
dc.description.references De Araújo, M. V., David, C. C., Neto, J. C., de Oliveira, L. A. P. L., da Silva, K. C. J., dos Santos, J. M., … Alexandre-Moreira, M. S. (2017). Evaluation on the leishmanicidal activity of 2-N,N′-dialkylamino-1,4-naphthoquinone derivatives. Experimental Parasitology, 176, 46-51. doi:10.1016/j.exppara.2017.02.004 es_ES
dc.description.references Ju Woo, H., Jun, D. Y., Lee, J. Y., Park, H. S., Woo, M. H., Park, S. J., … Kim, Y. H. (2017). Anti-inflammatory action of 2-carbomethoxy-2,3-epoxy-3-prenyl-1,4-naphthoquinone (CMEP-NQ) suppresses both the MyD88-dependent and TRIF-dependent pathways of TLR4 signaling in LPS-stimulated RAW264.7 cells. Journal of Ethnopharmacology, 205, 103-115. doi:10.1016/j.jep.2017.04.029 es_ES
dc.description.references Milackova, I., Prnova, M. S., Majekova, M., Sotnikova, R., Stasko, M., Kovacikova, L., … Stefek, M. (2014). 2-Chloro-1,4-naphthoquinone derivative of quercetin as an inhibitor of aldose reductase and anti-inflammatory agent. Journal of Enzyme Inhibition and Medicinal Chemistry, 30(1), 107-113. doi:10.3109/14756366.2014.892935 es_ES
dc.description.references Soares, A. S., Barbosa, F. L., Rüdiger, A. L., Hughes, D. L., Salvador, M. J., Zampronio, A. R., & Stefanello, M. É. A. (2017). Naphthoquinones of Sinningia reitzii and Anti-inflammatory/Antinociceptive Activities of 8-Hydroxydehydrodunnione. Journal of Natural Products, 80(6), 1837-1843. doi:10.1021/acs.jnatprod.6b01186 es_ES
dc.description.references Hatae, N., Nakamura, J., Okujima, T., Ishikura, M., Abe, T., Hibino, S., … Toyota, E. (2013). Effect of the orthoquinone moiety in 9,10-phenanthrenequinone on its ability to induce apoptosis in HCT-116 and HL-60 cells. Bioorganic & Medicinal Chemistry Letters, 23(16), 4637-4640. doi:10.1016/j.bmcl.2013.06.015 es_ES
dc.description.references Marastoni, M., Trapella, C., Scotti, A., Fantinati, A., Ferretti, V., Marzola, E., … Preti, D. (2017). Naphthoquinone amino acid derivatives, synthesis and biological activity as proteasome inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 32(1), 865-877. doi:10.1080/14756366.2017.1334649 es_ES
dc.description.references Qiu, H.-Y., Wang, P.-F., Lin, H.-Y., Tang, C.-Y., Zhu, H.-L., & Yang, Y.-H. (2017). Naphthoquinones: A continuing source for discovery of therapeutic antineoplastic agents. Chemical Biology & Drug Design, 91(3), 681-690. doi:10.1111/cbdd.13141 es_ES
dc.description.references Romão, L., do Canto, V. P., Netz, P. A., Moura-Neto, V., Pinto, Â. C., & Follmer, C. (2018). Conjugation with polyamines enhances the antitumor activity of naphthoquinones against human glioblastoma cells. Anti-Cancer Drugs, 29(6), 520-529. doi:10.1097/cad.0000000000000619 es_ES
dc.description.references Poma, P., Labbozzetta, M., Notarbartolo, M., Bruno, M., Maggio, A., Rosselli, S., … Zito, P. (2018). Chemical composition, in vitro antitumor and pro-oxidant activities of Glandora rosmarinifolia (Boraginaceae) essential oil. PLOS ONE, 13(5), e0196947. doi:10.1371/journal.pone.0196947 es_ES
dc.description.references Prati, F., Bergamini, C., Molina, M. T., Falchi, F., Cavalli, A., Kaiser, M., … Bolognesi, M. L. (2015). 2-Phenoxy-1,4-naphthoquinones: From a Multitarget Antitrypanosomal to a Potential Antitumor Profile. Journal of Medicinal Chemistry, 58(16), 6422-6434. doi:10.1021/acs.jmedchem.5b00748 es_ES
dc.description.references Galm, U., Hager, M. H., Van Lanen, S. G., Ju, J., Thorson, J. S., & Shen, B. (2005). Antitumor Antibiotics:  Bleomycin, Enediynes, and Mitomycin. Chemical Reviews, 105(2), 739-758. doi:10.1021/cr030117g es_ES
dc.description.references Gewirtz, D. (1999). A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochemical Pharmacology, 57(7), 727-741. doi:10.1016/s0006-2952(98)00307-4 es_ES
dc.description.references Wolkenberg, S. E., & Boger, D. L. (2002). Mechanisms of in Situ Activation for DNA-Targeting Antitumor Agents. Chemical Reviews, 102(7), 2477-2496. doi:10.1021/cr010046q es_ES
dc.description.references Krishnan, P., & Bastow, K. F. (2001). Novel mechanism of cellular DNA topoisomerase II inhibition by the pyranonaphthoquinone derivatives α-lapachone and β-lapachone. Cancer Chemotherapy and Pharmacology, 47(3), 187-198. doi:10.1007/s002800000221 es_ES
dc.description.references Pinto, A. V., Ferreira, V. F., Capella, R. S., Gilbert, B., Pinto, M. C. R., & Da Silva, J. S. (1987). Activity of some naphthoquinones on blood stream forms of Trypanosoma cruzi. Transactions of the Royal Society of Tropical Medicine and Hygiene, 81(4), 609-610. doi:10.1016/0035-9203(87)90427-5 es_ES
dc.description.references De Moura, K. C. G., Emery, F. S., Neves-Pinto, C., Pinto, M. do C. F. R., Dantas, A. P., Salomão, K., … Pinto, A. V. (2001). Trypanocidal activity of isolated naphthoquinones from Tabebuia and some heterocyclic derivatives: a review from an interdisciplinary study. Journal of the Brazilian Chemical Society, 12(3). doi:10.1590/s0103-50532001000300003 es_ES
dc.description.references Salustiano, E. J. S., Netto, C. D., Fernandes, R. F., da Silva, A. J. M., Bacelar, T. S., Castro, C. P., … Costa, P. R. R. (2009). Comparison of the cytotoxic effect of lapachol, α-lapachone and pentacyclic 1,4-naphthoquinones on human leukemic cells. Investigational New Drugs, 28(2), 139-144. doi:10.1007/s10637-009-9231-y es_ES
dc.description.references Moore, H. W. (1977). Bioactivation as a Model for Drug Design Bioreductive Alkylation. Science, 197(4303), 527-532. doi:10.1126/science.877572 es_ES
dc.description.references Docampo, R., Cruz, F. S., Boveris, A., Muniz, R. P. A., & Esquivel, D. M. S. (1979). β-lapachone enhancement of lipid peroxidation and superoxide anion and hydrogen peroxide formation by Sarcoma 180 ascites tumor cells. Biochemical Pharmacology, 28(6), 723-728. doi:10.1016/0006-2952(79)90348-4 es_ES
dc.description.references Powis, G. (1987). Metabolism and reactions of quinoid anticancer agents. Pharmacology & Therapeutics, 35(1-2), 57-162. doi:10.1016/0163-7258(87)90105-7 es_ES
dc.description.references Santos, D. M., Santos, M. M. M., Moreira, R., Solá, S., & Rodrigues, C. M. P. (2012). Synthetic Condensed 1,4-naphthoquinone Derivative Shifts Neural Stem Cell Differentiation by Regulating Redox State. Molecular Neurobiology, 47(1), 313-324. doi:10.1007/s12035-012-8353-y es_ES
dc.description.references Baptista, M. S., Cadet, J., Di Mascio, P., Ghogare, A. A., Greer, A., Hamblin, M. R., … Yoshimura, T. M. (2017). Type I and Type II Photosensitized Oxidation Reactions: Guidelines and Mechanistic Pathways. Photochemistry and Photobiology, 93(4), 912-919. doi:10.1111/php.12716 es_ES
dc.description.references Abrahamse, H., & Hamblin, M. R. (2016). New photosensitizers for photodynamic therapy. Biochemical Journal, 473(4), 347-364. doi:10.1042/bj20150942 es_ES
dc.description.references Davies, M. J., & Truscott, R. J. W. (2001). Photo-oxidation of proteins and its role in cataractogenesis. Journal of Photochemistry and Photobiology B: Biology, 63(1-3), 114-125. doi:10.1016/s1011-1344(01)00208-1 es_ES
dc.description.references Østdal, H., Davies, M. J., & Andersen, H. J. (2002). Reaction between protein radicals and other biomolecules. Free Radical Biology and Medicine, 33(2), 201-209. doi:10.1016/s0891-5849(02)00785-2 es_ES
dc.description.references Pattison, D. I., Rahmanto, A. S., & Davies, M. J. (2012). Photo-oxidation of proteins. Photochem. Photobiol. Sci., 11(1), 38-53. doi:10.1039/c1pp05164d es_ES
dc.description.references Ananieva, E. (2015). Targeting amino acid metabolism in cancer growth and anti-tumor immune response. World Journal of Biological Chemistry, 6(4), 281. doi:10.4331/wjbc.v6.i4.281 es_ES
dc.description.references Silva, E., Barrias, P., Fuentes-Lemus, E., Tirapegui, C., Aspee, A., Carroll, L., … López-Alarcón, C. (2019). Riboflavin-induced Type 1 photo-oxidation of tryptophan using a high intensity 365 nm light emitting diode. Free Radical Biology and Medicine, 131, 133-143. doi:10.1016/j.freeradbiomed.2018.11.026 es_ES
dc.description.references Castaño, C., Vignoni, M., Vicendo, P., Oliveros, E., & Thomas, A. H. (2016). Degradation of tyrosine and tryptophan residues of peptides by type I photosensitized oxidation. Journal of Photochemistry and Photobiology B: Biology, 164, 226-235. doi:10.1016/j.jphotobiol.2016.09.024 es_ES
dc.description.references Brahmia, O., & Richard, C. (2003). Phototransformation of 1,4-naphthoquinone in aqueous solution. Photochemical & Photobiological Sciences, 2(10), 1038. doi:10.1039/b305376h es_ES
dc.description.references Görner, H. (2007). Oxygen Uptake upon Photolysis of 1,4-Benzoquinones and 1,4-Naphthoquinones in Air-Saturated Aqueous Solution in the Presence of Formate, Amines, Ascorbic Acid, and Alcohols. The Journal of Physical Chemistry A, 111(15), 2814-2819. doi:10.1021/jp0683061 es_ES
dc.description.references Görner, H. (2005). Photoreactions of 1,4-Naphthoquinones: Effects of Substituents and Water on the Intermediates and Reactivity¶. Photochemistry and Photobiology, 81(2), 376. doi:10.1562/2004-08-11-ra-270.1 es_ES
dc.description.references Itoh, T. (1995). Low-Lying Electronic States, Spectroscopy, and Photophysics of Linear Para Acenequinones. Chemical Reviews, 95(7), 2351-2368. doi:10.1021/cr00039a004 es_ES
dc.description.references Bruce, J. M., Chaudhry, A.-U.-H., & Dawes, K. (1974). Light-induced and related reactions of quinones. Part X. Further studies with hydroxymethyl-, vinyl-, and (2-ethoxycarbonylethyl)-1,4-benzoquinones. Journal of the Chemical Society, Perkin Transactions 1, 288. doi:10.1039/p19740000288 es_ES
dc.description.references Teixeira, R. I., dos Santos, I. C., Garden, S. J., Carneiro, P. F., Ferreira, V. F., & de Lucas, N. C. (2017). Photosensitizing Properties of 6H -Dibenzo[b,   h ]xanthene Derivatives. ChemistrySelect, 2(35), 11732-11738. doi:10.1002/slct.201702649 es_ES
dc.description.references Mitchell, L. J., Lewis, W., & Moody, C. J. (2013). Solar photochemistry: optimisation of the photo Friedel–Crafts acylation of naphthoquinones. Green Chemistry, 15(10), 2830. doi:10.1039/c3gc41477a es_ES
dc.description.references Ando, Y., & Suzuki, K. (2018). Photoredox Reactions of Quinones. Chemistry - A European Journal, 24(60), 15955-15964. doi:10.1002/chem.201801064 es_ES
dc.description.references Suzuki, K., Ando, Y., & Matsumoto, T. (2017). Intramolecular Photoredox Reaction of Naphthoquinone Derivatives. Synlett, 28(09), 1040-1045. doi:10.1055/s-0036-1589001 es_ES
dc.description.references Ando, Y., Hanaki, A., Sasaki, R., Ohmori, K., & Suzuki, K. (2017). Stereospecificity in Intramolecular Photoredox Reactions of Naphthoquinones: Enantioselective Total Synthesis of (−)-Spiroxin C. Angewandte Chemie International Edition, 56(38), 11460-11465. doi:10.1002/anie.201705562 es_ES
dc.description.references Zhou, Q., Wei, Y., Liu, X., Chen, L., Zhou, X., & Liu, S. (2017). Photochemical Reaction Between 1,2-Naphthoquinone and Adenine in Binary Water-Acetonitrile Solutions. Photochemistry and Photobiology, 94(1), 61-68. doi:10.1111/php.12808 es_ES
dc.description.references Szymczak, A. M., Podsiadły, R., Podemska, K., & Sokołowska, J. (2013). Dyes based on a 1,4-naphthoquinone skeleton as new type II photoinitiators for radical polymerisation. Coloration Technology, 129(4), 284-288. doi:10.1111/cote.12030 es_ES
dc.description.references Görner, H. (2011). Photoreduction of nitro-1,4-naphthoquinones in solution. Journal of Photochemistry and Photobiology A: Chemistry, 224(1), 135-140. doi:10.1016/j.jphotochem.2011.09.016 es_ES
dc.description.references Bose, A., Dey, D., & Basu, S. (2007). Structure-dependent switchover of reaction modes: A laser flash photolysis and magnetic field effect study. Journal of Photochemistry and Photobiology A: Chemistry, 186(2-3), 130-134. doi:10.1016/j.jphotochem.2006.07.021 es_ES
dc.description.references Jornet, D., Bosca, F., Andreu, J. M., Domingo, L. R., Tormos, R., & Miranda, M. A. (2016). Analysis of mebendazole binding to its target biomolecule by laser flash photolysis. Journal of Photochemistry and Photobiology B: Biology, 155, 1-6. doi:10.1016/j.jphotobiol.2015.12.003 es_ES
dc.description.references Netto-Ferreira, J. C., Lhiaubet-Vallet, V., Bernardes, B. O., Ferreira, A. B. B., & Miranda, M. Á. (2008). Characterization, reactivity and photosensitizing properties of the triplet excited state of α-lapachone. Physical Chemistry Chemical Physics, 10(44), 6645. doi:10.1039/b810413a es_ES
dc.description.references Freire, C. P. V., Ferreira, S. B., de Oliveira, N. S. M., Matsuura, A. B. J., Gama, I. L., da Silva, F. de C., … Ferreira, V. F. (2010). Synthesis and biological evaluation of substituted α- and β-2,3-dihydrofuran naphthoquinones as potent anticandidal agents. MedChemComm, 1(3), 229. doi:10.1039/c0md00074d es_ES
dc.description.references Da Silva Júnior, E. N., de Souza, M. C. B. V., Fernandes, M. C., Menna-Barreto, R. F. S., Pinto, M. do C. F. R., de Assis Lopes, F., … de Castro, S. L. (2008). Synthesis and anti-Trypanosoma cruzi activity of derivatives from nor-lapachones and lapachones. Bioorganic & Medicinal Chemistry, 16(9), 5030-5038. doi:10.1016/j.bmc.2008.03.032 es_ES
dc.description.references Ferreira, F. da R., Ferreira, S. B., Araújo, A. J., Marinho Filho, J. D. B., Pessoa, C., Moraes, M. O., … Goulart, M. O. F. (2013). Arylated α- and β-dihydrofuran naphthoquinones: Electrochemical parameters, evaluation of antitumor activity and their correlation. Electrochimica Acta, 110, 634-640. doi:10.1016/j.electacta.2013.04.148 es_ES
dc.description.references De Lucas, N. C., Corrêa, R. J., Garden, S. J., Santos, G., Rodrigues, R., Carvalho, C. E. M., … Miranda, M. A. (2012). Singlet oxygen production by pyrano and furano 1,4-naphthoquinones in non-aqueous medium. Photochemical & Photobiological Sciences, 11(7), 1201. doi:10.1039/c2pp05412d es_ES
dc.description.references Jackson, E. L. (1952). O-p-Toluenesulfonyl-L-tyrosine, Its N-Acetyl and N-Benzoyl Derivatives. Journal of the American Chemical Society, 74(3), 837-838. doi:10.1021/ja01123a513 es_ES
dc.description.references Huang, H. T., & Niemann, C. (1951). The Kinetics of the α-Chymotrypsin Catalyzed Hydrolysis of Acetyl- and Nicotinyl-L-tryptophanamide in Aqueous Solutions at 25° and pH 7.91. Journal of the American Chemical Society, 73(4), 1541-1548. doi:10.1021/ja01148a040 es_ES
dc.description.references Silva, F. de C. da, Ferreira, S. B., Kaiser, C. R., Pinto, A. C., & Ferreira, V. F. (2009). Synthesis of α- and β-lapachone derivatives from hetero diels-alder trapping of alkyl and aryl o-quinone methides. Journal of the Brazilian Chemical Society, 20(8), 1478-1482. doi:10.1590/s0103-50532009000800014 es_ES
dc.description.references Netto-Ferreira, J. C., Bernardes, B., Ferreira, A. B. B., & Miranda, M. Á. (2008). Laser flash photolysis study of the triplet reactivity of β-lapachones. Photochemical & Photobiological Sciences, 7(4), 467. doi:10.1039/b716104b es_ES
dc.description.references Scaiano, J. C. (1982). Laser flash photolysis studies of the reactions of some 1,4-biradicals. Accounts of Chemical Research, 15(8), 252-258. doi:10.1021/ar00080a004 es_ES
dc.description.references De Lucas, N. C., Silva, M. T., Gege, C., & Netto-Ferreira, J. C. (1999). Steady state and laser flash photolysis of acenaphthenequinone in the presence of olefins. Journal of the Chemical Society, Perkin Transactions 2, (12), 2795-2801. doi:10.1039/a904156g es_ES
dc.description.references De Lucas, N. C., Ruis, C. P., Teixeira, R. I., Marçal, L. L., Garden, S. J., Corrêa, R. J., … Ferreira, V. F. (2014). Photosensitizing properties of triplet furano and pyrano-1,2-naphthoquinones. Journal of Photochemistry and Photobiology A: Chemistry, 276, 16-30. doi:10.1016/j.jphotochem.2013.11.010 es_ES
dc.description.references Monti, S., & Manet, I. (2014). Supramolecular photochemistry of drugs in biomolecular environments. Chem. Soc. Rev., 43(12), 4051-4067. doi:10.1039/c3cs60402k es_ES
dc.description.references Bacellar, I., Tsubone, T., Pavani, C., & Baptista, M. (2015). Photodynamic Efficiency: From Molecular Photochemistry to Cell Death. International Journal of Molecular Sciences, 16(9), 20523-20559. doi:10.3390/ijms160920523 es_ES
dc.description.references Davies, M. J. (2003). Singlet oxygen-mediated damage to proteins and its consequences. Biochemical and Biophysical Research Communications, 305(3), 761-770. doi:10.1016/s0006-291x(03)00817-9 es_ES
dc.description.references Tsentalovich, Y. P., Snytnikova, O. A., & Sagdeev, R. Z. (2004). Properties of excited states of aqueous tryptophan. Journal of Photochemistry and Photobiology A: Chemistry, 162(2-3), 371-379. doi:10.1016/s1010-6030(03)00376-9 es_ES
dc.description.references Netto-Ferreira, J. C., Lhiaubet-Vallet, V., Silva, A. R. da, Silva, A. M. da, Ferreira, A. B. B., & Miranda, M. A. (2010). The photochemical reactivity of triplet β-lapachone-3-sulfonic acid towards biological substrates. Journal of the Brazilian Chemical Society, 21(6), 966-972. doi:10.1590/s0103-50532010000600004 es_ES
dc.description.references Merenyi, G., Lind, J., & Shen, X. (1988). Electron transfer from indoles, phenol, and sulfite (SO32-) to chlorine dioxide (ClO2.). The Journal of Physical Chemistry, 92(1), 134-137. doi:10.1021/j100312a029 es_ES
dc.description.references Das, P. K., Encinas, M. V., & Scaiano, J. C. (1981). Laser flash photolysis study of the reactions of carbonyl triplets with phenols and photochemistry of p-hydroxypropiophenone. Journal of the American Chemical Society, 103(14), 4154-4162. doi:10.1021/ja00404a029 es_ES
dc.description.references Das, P. K., & Bhattacharyya, S. N. (1981). Laser flash photolysis study of electron transfer reactions of phenolate ions with aromatic carbonyl triplets. The Journal of Physical Chemistry, 85(10), 1391-1395. doi:10.1021/j150610a024 es_ES
dc.description.references Das, P. K., Encinas, M. V., Steenken, S., & Scaiano, J. C. (1981). Reaction of tert-butoxy radicals with phenols. Comparison with the reactions of carbonyl triplets. Journal of the American Chemical Society, 103(14), 4162-4166. doi:10.1021/ja00404a030 es_ES
dc.description.references De Lucas, N. C., Correa, R. J., Albuquerque, A. C. C., Firme, C. L., Garden, S. J., Bertoti, A. R., & Netto-Ferreira, J. C. (2007). Laser Flash Photolysis of 1,2-Diketopyracene and a Theoretical Study of the Phenolic Hydrogen Abstraction by the Triplet State of Cyclic α-Diketones. The Journal of Physical Chemistry A, 111(6), 1117-1122. doi:10.1021/jp065675o es_ES
dc.description.references De Lucas, N. C., Elias, M. M., Firme, C. L., Corrêa, R. J., Garden, S. J., Netto-Ferreira, J. C., & Nicodem, D. E. (2009). A combined laser flash photolysis, density functional theory and atoms in molecules study of the photochemical hydrogen abstraction by pyrene-4,5-dione. Journal of Photochemistry and Photobiology A: Chemistry, 201(1), 1-7. doi:10.1016/j.jphotochem.2008.08.014 es_ES
dc.description.references Pérez-Prieto, J., Stiriba, S.-E., Boscá, F., Lahoz, A., Domingo, L. R., Mourabit, F., … Miranda, M. A. (2004). Geometrical Effects on the Intramolecular Quenching of π,π* Aromatic Ketones by Phenols and Indoles. The Journal of Organic Chemistry, 69(25), 8618-8625. doi:10.1021/jo048973v es_ES
dc.description.references Morozova, O. B., Panov, M. S., Fishman, N. N., & Yurkovskaya, A. V. (2018). Electron transfer vs. proton-coupled electron transfer as the mechanism of reaction between amino acids and triplet-excited benzophenones revealed by time-resolved CIDNP. Physical Chemistry Chemical Physics, 20(32), 21127-21135. doi:10.1039/c8cp03591a es_ES
dc.description.references Saouma, C. T., & Mayer, J. M. (2014). Do spin state and spin density affect hydrogen atom transfer reactivity? Chem. Sci., 5(1), 21-31. doi:10.1039/c3sc52664j es_ES
dc.description.references Hsieh, C.-C., Jiang, C.-M., & Chou, P.-T. (2010). Recent Experimental Advances on Excited-State Intramolecular Proton Coupled Electron Transfer Reaction. Accounts of Chemical Research, 43(10), 1364-1374. doi:10.1021/ar1000499 es_ES
dc.description.references Herner, A., & Lin, Q. (2015). Photo-Triggered Click Chemistry for Biological Applications. Topics in Current Chemistry, 374(1). doi:10.1007/s41061-015-0002-2 es_ES
dc.description.references Gagliardi, C. J., Westlake, B. C., Kent, C. A., Paul, J. J., Papanikolas, J. M., & Meyer, T. J. (2010). Integrating proton coupled electron transfer (PCET) and excited states. Coordination Chemistry Reviews, 254(21-22), 2459-2471. doi:10.1016/j.ccr.2010.03.001 es_ES
dc.description.references Darcy, J. W., Koronkiewicz, B., Parada, G. A., & Mayer, J. M. (2018). A Continuum of Proton-Coupled Electron Transfer Reactivity. Accounts of Chemical Research, 51(10), 2391-2399. doi:10.1021/acs.accounts.8b00319 es_ES
dc.description.references Pizano, A. A., Lutterman, D. A., Holder, P. G., Teets, T. S., Stubbe, J., & Nocera, D. G. (2011). Photo-ribonucleotide reductase  2 by selective cysteine labeling with a radical phototrigger. Proceedings of the National Academy of Sciences, 109(1), 39-43. doi:10.1073/pnas.1115778108 es_ES
dc.description.references Gentry, E. C., & Knowles, R. R. (2016). Synthetic Applications of Proton-Coupled Electron Transfer. Accounts of Chemical Research, 49(8), 1546-1556. doi:10.1021/acs.accounts.6b00272 es_ES
dc.description.references Hammes-Schiffer, S. (2015). Proton-Coupled Electron Transfer: Moving Together and Charging Forward. Journal of the American Chemical Society, 137(28), 8860-8871. doi:10.1021/jacs.5b04087 es_ES
dc.description.references Savéant, J.-M. (2014). Concerted Proton-Electron Transfers: Fundamentals and Recent Developments. Annual Review of Analytical Chemistry, 7(1), 537-560. doi:10.1146/annurev-anchem-071213-020315 es_ES
dc.description.references Mayer, J. M., Rhile, I. J., Larsen, F. B., Mader, E. A., Markle, T. F., & DiPasquale, A. G. (2006). Models for Proton-coupled Electron Transfer in Photosystem II. Photosynthesis Research, 87(1), 3-20. doi:10.1007/s11120-005-8164-3 es_ES
dc.description.references Concepcion, J. J., Brennaman, M. K., Deyton, J. R., Lebedeva, N. V., Forbes, M. D. E., Papanikolas, J. M., & Meyer, T. J. (2007). Excited-State Quenching by Proton-Coupled Electron Transfer. Journal of the American Chemical Society, 129(22), 6968-6969. doi:10.1021/ja069049g es_ES
dc.description.references Irebo, T., Johansson, O., & Hammarström, L. (2008). The Rate Ladder of Proton-Coupled Tyrosine Oxidation in Water: A Systematic Dependence on Hydrogen Bonds and Protonation State. Journal of the American Chemical Society, 130(29), 9194-9195. doi:10.1021/ja802076v es_ES
dc.description.references Ravensbergen, J., Brown, C. L., Moore, G. F., Frese, R. N., van Grondelle, R., Gust, D., … Kennis, J. T. M. (2015). Kinetic isotope effect of proton-coupled electron transfer in a hydrogen bonded phenol–pyrrolidino[60]fullerene. Photochemical & Photobiological Sciences, 14(12), 2147-2150. doi:10.1039/c5pp00259a es_ES
dc.description.references Markle, T. F., Darcy, J. W., & Mayer, J. M. (2018). A new strategy to efficiently cleave and form C–H bonds using proton-coupled electron transfer. Science Advances, 4(7). doi:10.1126/sciadv.aat5776 es_ES
dc.description.references Manbeck, G. F., Fujita, E., & Concepcion, J. J. (2016). Proton-Coupled Electron Transfer in a Strongly Coupled Photosystem II-Inspired Chromophore–Imidazole–Phenol Complex: Stepwise Oxidation and Concerted Reduction. Journal of the American Chemical Society, 138(36), 11536-11549. doi:10.1021/jacs.6b03506 es_ES
dc.description.references Amada, I., Yamaji, M., Sase, M., & Shizuka, H. (1995). Laser flash photolysis studies on hydrogen atom abstraction from phenol by triplet naphthoquinones in acetonitrile. Journal of the Chemical Society, Faraday Transactions, 91(17), 2751. doi:10.1039/ft9959102751 es_ES
dc.description.references Craggs, J., Kirk, S. H., & Ahmad, S. I. (1994). Synergistic action of near-UV and phenylalanine, tyrosine or tryptophan on the inactivation of phage T7: Role of superoxide radicals and hydrogen peroxide. Journal of Photochemistry and Photobiology B: Biology, 24(2), 123-128. doi:10.1016/1011-1344(94)07014-8 es_ES
dc.description.references Ouyang, D., & Hirakawa, K. (2017). Photosensitized enzyme deactivation and protein oxidation by axial-substituted phosphorus(V) tetraphenylporphyrins. Journal of Photochemistry and Photobiology B: Biology, 175, 125-131. doi:10.1016/j.jphotobiol.2017.08.036 es_ES
dc.description.references Thomas, A. H., Zurbano, B. N., Lorente, C., Santos, J., Roman, E. A., & Laura Dántola, M. (2014). Chemical changes in bovine serum albumin photoinduced by pterin. Journal of Photochemistry and Photobiology B: Biology, 141, 262-268. doi:10.1016/j.jphotobiol.2014.10.007 es_ES
dc.description.references Kerwin, B. A., & Remmele, R. L. (2007). Protect from Light: Photodegradation and Protein Biologics. Journal of Pharmaceutical Sciences, 96(6), 1468-1479. doi:10.1002/jps.20815 es_ES
dc.description.references Pérez-Prieto, J., Boscá, F., Galian, R. E., Lahoz, A., Domingo, L. R., & Miranda, M. A. (2003). Photoreaction between 2-Benzoylthiophene and Phenol or Indole. The Journal of Organic Chemistry, 68(13), 5104-5113. doi:10.1021/jo034225e es_ES
dc.description.references De Lucas, N. C., Fraga, H. S., Cardoso, C. P., Corrêa, R. J., Garden, S. J., & Netto-Ferreira, J. C. (2010). A laser flash photolysis and theoretical study of hydrogen abstraction from phenols by triplet α-naphthoflavone. Physical Chemistry Chemical Physics, 12(36), 10746. doi:10.1039/c002738c es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem