Mostrar el registro sencillo del ítem
dc.contributor.author | Teixeira, Rodolfo I. | es_ES |
dc.contributor.author | Goulart, Juliana S. | es_ES |
dc.contributor.author | Correa, Rodrigo J. | es_ES |
dc.contributor.author | Garden, Simon J. | es_ES |
dc.contributor.author | Ferreira, Sabrina B. | es_ES |
dc.contributor.author | Netto-Ferreira, Jose Carlos | es_ES |
dc.contributor.author | Ferreira, Vitor F. | es_ES |
dc.contributor.author | Miro, Paula | es_ES |
dc.contributor.author | Marín García, Mª Luisa | es_ES |
dc.contributor.author | Miranda Alonso, Miguel Ángel | es_ES |
dc.contributor.author | De Lucas, Nanci C. | es_ES |
dc.date.accessioned | 2021-02-04T04:32:10Z | |
dc.date.available | 2021-02-04T04:32:10Z | |
dc.date.issued | 2019 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/160682 | |
dc.description.abstract | [EN] The photochemical reactivity of the triplet state of pyrano- and furano-1,4-naphthoquinone derivatives ( 1 and 2) has been examined employing nanosecond laser flash photolysis. The quinone triplets were efficiently quenched by L-tryptophan methyl ester hydrochloride, L-tyrosine methyl ester hydrochloride, N-acetyl-L-tryptophan methyl ester and N-acetyl-L-tyrosine methyl ester, substituted phenols and indole ( k(q) similar to 10(9) L mol(-1) s(-1)). For all these quenchers new transients were formed in the quenching process. These were assigned to the corresponding radical pairs that resulted from a coupled electron/proton transfer from the phenols, indole, amino acids, or their esters, to the excited state of the quinone. The proton coupled electron transfer (PCET) mechanism is supported by experimental rate constants, isotopic effects and theoretical calculations. The calculations revealed differences between the hydrogen abstraction reactions of phenol and indole substrates. For the latter, the calculations indicate that electron transfer and proton transfer occur as discrete steps. | es_ES |
dc.description.sponsorship | The authors thank the following Brazilian agencies Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES), Conselho Nacional de Desenvolvimento Cientificoe Tecnologico (CNPq) and Fundacao de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ) for financial assistance. The authors also thank the Generalitat Valenciana (Prometeo Program). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | The Royal Society of Chemistry | es_ES |
dc.relation.ispartof | RSC Advances | es_ES |
dc.rights | Reconocimiento - No comercial (by-nc) | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | A photochemical and theoretical study of the triplet reactivity of furano- and pyrano-1,4-naphthoquionones towards tyrosine and tryptophan derivatives | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1039/c9ra01939a | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2013%2F005/ES/ESPECIES FOTOACTIVAS Y SU INTERACCION CON BIOMOLECULAS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Teixeira, RI.; Goulart, JS.; Correa, RJ.; Garden, SJ.; Ferreira, SB.; Netto-Ferreira, JC.; Ferreira, VF.... (2019). A photochemical and theoretical study of the triplet reactivity of furano- and pyrano-1,4-naphthoquionones towards tyrosine and tryptophan derivatives. RSC Advances. 9(24):13386-13397. https://doi.org/10.1039/c9ra01939a | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1039/c9ra01939a | es_ES |
dc.description.upvformatpinicio | 13386 | es_ES |
dc.description.upvformatpfin | 13397 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 9 | es_ES |
dc.description.issue | 24 | es_ES |
dc.identifier.eissn | 2046-2069 | es_ES |
dc.relation.pasarela | S\404250 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Coordenaçao de Aperfeiçoamento de Pessoal de Nível Superior, Brasil | es_ES |
dc.contributor.funder | Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasil | es_ES |
dc.contributor.funder | Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro | es_ES |
dc.description.references | Sieveking, I., Thomas, P., Estévez, J. C., Quiñones, N., Cuéllar, M. A., Villena, J., … Salas, C. O. (2014). 2-Phenylaminonaphthoquinones and related compounds: Synthesis, trypanocidal and cytotoxic activities. Bioorganic & Medicinal Chemistry, 22(17), 4609-4620. doi:10.1016/j.bmc.2014.07.030 | es_ES |
dc.description.references | Louvis, A. da R., Silva, N. A. A., Semaan, F. S., da Silva, F. de C., Saramago, G., de Souza, L. C. S. V., … Martins, D. de L. (2016). Synthesis, characterization and biological activities of 3-aryl-1,4-naphthoquinones – green palladium-catalysed Suzuki cross coupling. New Journal of Chemistry, 40(9), 7643-7656. doi:10.1039/c6nj00872k | es_ES |
dc.description.references | Lara, L. S., Moreira, C. S., Calvet, C. M., Lechuga, G. C., Souza, R. S., Bourguignon, S. C., … Pereira, M. C. S. (2018). Efficacy of 2-hydroxy-3-phenylsulfanylmethyl-[1,4]-naphthoquinone derivatives against different Trypanosoma cruzi discrete type units: Identification of a promising hit compound. European Journal of Medicinal Chemistry, 144, 572-581. doi:10.1016/j.ejmech.2017.12.052 | es_ES |
dc.description.references | Medeiros, C. S., Pontes-Filho, N. T., Camara, C. A., Lima-Filho, J. V., Oliveira, P. C., Lemos, S. A., … Neves, R. P. (2010). Antifungal activity of the naphthoquinone beta-lapachone against disseminated infection with Cryptococcus neoformans var. neoformans in dexamethasone-immunosuppressed Swiss mice. Brazilian Journal of Medical and Biological Research, 43(4), 345-349. doi:10.1590/s0100-879x2010007500012 | es_ES |
dc.description.references | Riffel, A., Medina, L. F., Stefani, V., Santos, R. C., Bizani, D., & Brandelli, A. (2002). In vitro antimicrobial activity of a new series of 1,4-naphthoquinones. Brazilian Journal of Medical and Biological Research, 35(7), 811-818. doi:10.1590/s0100-879x2002000700008 | es_ES |
dc.description.references | Santos, M. M. M., Faria, N., Iley, J., Coles, S. J., Hursthouse, M. B., Martins, M. L., & Moreira, R. (2010). Reaction of naphthoquinones with substituted nitromethanes. Facile synthesis and antifungal activity of naphtho[2,3-d]isoxazole-4,9-diones. Bioorganic & Medicinal Chemistry Letters, 20(1), 193-195. doi:10.1016/j.bmcl.2009.10.137 | es_ES |
dc.description.references | Tandon, V. K., Maurya, H. K., Verma, M. K., Kumar, R., & Shukla, P. K. (2010). ‘On water’ assisted synthesis and biological evaluation of nitrogen and sulfur containing hetero-1,4-naphthoquinones as potent antifungal and antibacterial agents. European Journal of Medicinal Chemistry, 45(6), 2418-2426. doi:10.1016/j.ejmech.2010.02.023 | es_ES |
dc.description.references | Sánchez-Calvo, J. M., Barbero, G. R., Guerrero-Vásquez, G., Durán, A. G., Macías, M., Rodríguez-Iglesias, M. A., … Macías, F. A. (2016). Synthesis, antibacterial and antifungal activities of naphthoquinone derivatives: a structure–activity relationship study. Medicinal Chemistry Research, 25(6), 1274-1285. doi:10.1007/s00044-016-1550-x | es_ES |
dc.description.references | Teixeira, M. J., de Almeida, Y. M., Viana, J. R., Holanda Filha, J. G., Rodrigues, T. P., Prata, J. R. C., … Pompeu, M. M. L. (2001). In vitro andin vivo Leishmanicidal activity of 2-hydroxy-3-(3-methyl-2-butenyl)-1,4-naphthoquinone (lapachol). Phytotherapy Research, 15(1), 44-48. doi:10.1002/1099-1573(200102)15:1<44::aid-ptr685>3.0.co;2-1 | es_ES |
dc.description.references | Tavares, G. de S. V., Mendonça, D. V. C., Lage, D. P., Granato, J. da T., Ottoni, F. M., Ludolf, F., … Coelho, E. A. F. (2018). Antileishmanial Activity, Cytotoxicity and Mechanism of Action of Clioquinol Against Leishmania infantum and Leishmania amazonensis Species. Basic & Clinical Pharmacology & Toxicology, 123(3), 236-246. doi:10.1111/bcpt.12990 | es_ES |
dc.description.references | Naujorks, A. A. dos S., da Silva, A. O., Lopes, R. da S., de Albuquerque, S., Beatriz, A., Marques, M. R., & de Lima, D. P. (2015). Novel naphthoquinone derivatives and evaluation of their trypanocidal and leishmanicidal activities. Organic & Biomolecular Chemistry, 13(2), 428-437. doi:10.1039/c4ob01869a | es_ES |
dc.description.references | De Araújo, M. V., David, C. C., Neto, J. C., de Oliveira, L. A. P. L., da Silva, K. C. J., dos Santos, J. M., … Alexandre-Moreira, M. S. (2017). Evaluation on the leishmanicidal activity of 2-N,N′-dialkylamino-1,4-naphthoquinone derivatives. Experimental Parasitology, 176, 46-51. doi:10.1016/j.exppara.2017.02.004 | es_ES |
dc.description.references | Ju Woo, H., Jun, D. Y., Lee, J. Y., Park, H. S., Woo, M. H., Park, S. J., … Kim, Y. H. (2017). Anti-inflammatory action of 2-carbomethoxy-2,3-epoxy-3-prenyl-1,4-naphthoquinone (CMEP-NQ) suppresses both the MyD88-dependent and TRIF-dependent pathways of TLR4 signaling in LPS-stimulated RAW264.7 cells. Journal of Ethnopharmacology, 205, 103-115. doi:10.1016/j.jep.2017.04.029 | es_ES |
dc.description.references | Milackova, I., Prnova, M. S., Majekova, M., Sotnikova, R., Stasko, M., Kovacikova, L., … Stefek, M. (2014). 2-Chloro-1,4-naphthoquinone derivative of quercetin as an inhibitor of aldose reductase and anti-inflammatory agent. Journal of Enzyme Inhibition and Medicinal Chemistry, 30(1), 107-113. doi:10.3109/14756366.2014.892935 | es_ES |
dc.description.references | Soares, A. S., Barbosa, F. L., Rüdiger, A. L., Hughes, D. L., Salvador, M. J., Zampronio, A. R., & Stefanello, M. É. A. (2017). Naphthoquinones of Sinningia reitzii and Anti-inflammatory/Antinociceptive Activities of 8-Hydroxydehydrodunnione. Journal of Natural Products, 80(6), 1837-1843. doi:10.1021/acs.jnatprod.6b01186 | es_ES |
dc.description.references | Hatae, N., Nakamura, J., Okujima, T., Ishikura, M., Abe, T., Hibino, S., … Toyota, E. (2013). Effect of the orthoquinone moiety in 9,10-phenanthrenequinone on its ability to induce apoptosis in HCT-116 and HL-60 cells. Bioorganic & Medicinal Chemistry Letters, 23(16), 4637-4640. doi:10.1016/j.bmcl.2013.06.015 | es_ES |
dc.description.references | Marastoni, M., Trapella, C., Scotti, A., Fantinati, A., Ferretti, V., Marzola, E., … Preti, D. (2017). Naphthoquinone amino acid derivatives, synthesis and biological activity as proteasome inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 32(1), 865-877. doi:10.1080/14756366.2017.1334649 | es_ES |
dc.description.references | Qiu, H.-Y., Wang, P.-F., Lin, H.-Y., Tang, C.-Y., Zhu, H.-L., & Yang, Y.-H. (2017). Naphthoquinones: A continuing source for discovery of therapeutic antineoplastic agents. Chemical Biology & Drug Design, 91(3), 681-690. doi:10.1111/cbdd.13141 | es_ES |
dc.description.references | Romão, L., do Canto, V. P., Netz, P. A., Moura-Neto, V., Pinto, Â. C., & Follmer, C. (2018). Conjugation with polyamines enhances the antitumor activity of naphthoquinones against human glioblastoma cells. Anti-Cancer Drugs, 29(6), 520-529. doi:10.1097/cad.0000000000000619 | es_ES |
dc.description.references | Poma, P., Labbozzetta, M., Notarbartolo, M., Bruno, M., Maggio, A., Rosselli, S., … Zito, P. (2018). Chemical composition, in vitro antitumor and pro-oxidant activities of Glandora rosmarinifolia (Boraginaceae) essential oil. PLOS ONE, 13(5), e0196947. doi:10.1371/journal.pone.0196947 | es_ES |
dc.description.references | Prati, F., Bergamini, C., Molina, M. T., Falchi, F., Cavalli, A., Kaiser, M., … Bolognesi, M. L. (2015). 2-Phenoxy-1,4-naphthoquinones: From a Multitarget Antitrypanosomal to a Potential Antitumor Profile. Journal of Medicinal Chemistry, 58(16), 6422-6434. doi:10.1021/acs.jmedchem.5b00748 | es_ES |
dc.description.references | Galm, U., Hager, M. H., Van Lanen, S. G., Ju, J., Thorson, J. S., & Shen, B. (2005). Antitumor Antibiotics: Bleomycin, Enediynes, and Mitomycin. Chemical Reviews, 105(2), 739-758. doi:10.1021/cr030117g | es_ES |
dc.description.references | Gewirtz, D. (1999). A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochemical Pharmacology, 57(7), 727-741. doi:10.1016/s0006-2952(98)00307-4 | es_ES |
dc.description.references | Wolkenberg, S. E., & Boger, D. L. (2002). Mechanisms of in Situ Activation for DNA-Targeting Antitumor Agents. Chemical Reviews, 102(7), 2477-2496. doi:10.1021/cr010046q | es_ES |
dc.description.references | Krishnan, P., & Bastow, K. F. (2001). Novel mechanism of cellular DNA topoisomerase II inhibition by the pyranonaphthoquinone derivatives α-lapachone and β-lapachone. Cancer Chemotherapy and Pharmacology, 47(3), 187-198. doi:10.1007/s002800000221 | es_ES |
dc.description.references | Pinto, A. V., Ferreira, V. F., Capella, R. S., Gilbert, B., Pinto, M. C. R., & Da Silva, J. S. (1987). Activity of some naphthoquinones on blood stream forms of Trypanosoma cruzi. Transactions of the Royal Society of Tropical Medicine and Hygiene, 81(4), 609-610. doi:10.1016/0035-9203(87)90427-5 | es_ES |
dc.description.references | De Moura, K. C. G., Emery, F. S., Neves-Pinto, C., Pinto, M. do C. F. R., Dantas, A. P., Salomão, K., … Pinto, A. V. (2001). Trypanocidal activity of isolated naphthoquinones from Tabebuia and some heterocyclic derivatives: a review from an interdisciplinary study. Journal of the Brazilian Chemical Society, 12(3). doi:10.1590/s0103-50532001000300003 | es_ES |
dc.description.references | Salustiano, E. J. S., Netto, C. D., Fernandes, R. F., da Silva, A. J. M., Bacelar, T. S., Castro, C. P., … Costa, P. R. R. (2009). Comparison of the cytotoxic effect of lapachol, α-lapachone and pentacyclic 1,4-naphthoquinones on human leukemic cells. Investigational New Drugs, 28(2), 139-144. doi:10.1007/s10637-009-9231-y | es_ES |
dc.description.references | Moore, H. W. (1977). Bioactivation as a Model for Drug Design Bioreductive Alkylation. Science, 197(4303), 527-532. doi:10.1126/science.877572 | es_ES |
dc.description.references | Docampo, R., Cruz, F. S., Boveris, A., Muniz, R. P. A., & Esquivel, D. M. S. (1979). β-lapachone enhancement of lipid peroxidation and superoxide anion and hydrogen peroxide formation by Sarcoma 180 ascites tumor cells. Biochemical Pharmacology, 28(6), 723-728. doi:10.1016/0006-2952(79)90348-4 | es_ES |
dc.description.references | Powis, G. (1987). Metabolism and reactions of quinoid anticancer agents. Pharmacology & Therapeutics, 35(1-2), 57-162. doi:10.1016/0163-7258(87)90105-7 | es_ES |
dc.description.references | Santos, D. M., Santos, M. M. M., Moreira, R., Solá, S., & Rodrigues, C. M. P. (2012). Synthetic Condensed 1,4-naphthoquinone Derivative Shifts Neural Stem Cell Differentiation by Regulating Redox State. Molecular Neurobiology, 47(1), 313-324. doi:10.1007/s12035-012-8353-y | es_ES |
dc.description.references | Baptista, M. S., Cadet, J., Di Mascio, P., Ghogare, A. A., Greer, A., Hamblin, M. R., … Yoshimura, T. M. (2017). Type I and Type II Photosensitized Oxidation Reactions: Guidelines and Mechanistic Pathways. Photochemistry and Photobiology, 93(4), 912-919. doi:10.1111/php.12716 | es_ES |
dc.description.references | Abrahamse, H., & Hamblin, M. R. (2016). New photosensitizers for photodynamic therapy. Biochemical Journal, 473(4), 347-364. doi:10.1042/bj20150942 | es_ES |
dc.description.references | Davies, M. J., & Truscott, R. J. W. (2001). Photo-oxidation of proteins and its role in cataractogenesis. Journal of Photochemistry and Photobiology B: Biology, 63(1-3), 114-125. doi:10.1016/s1011-1344(01)00208-1 | es_ES |
dc.description.references | Østdal, H., Davies, M. J., & Andersen, H. J. (2002). Reaction between protein radicals and other biomolecules. Free Radical Biology and Medicine, 33(2), 201-209. doi:10.1016/s0891-5849(02)00785-2 | es_ES |
dc.description.references | Pattison, D. I., Rahmanto, A. S., & Davies, M. J. (2012). Photo-oxidation of proteins. Photochem. Photobiol. Sci., 11(1), 38-53. doi:10.1039/c1pp05164d | es_ES |
dc.description.references | Ananieva, E. (2015). Targeting amino acid metabolism in cancer growth and anti-tumor immune response. World Journal of Biological Chemistry, 6(4), 281. doi:10.4331/wjbc.v6.i4.281 | es_ES |
dc.description.references | Silva, E., Barrias, P., Fuentes-Lemus, E., Tirapegui, C., Aspee, A., Carroll, L., … López-Alarcón, C. (2019). Riboflavin-induced Type 1 photo-oxidation of tryptophan using a high intensity 365 nm light emitting diode. Free Radical Biology and Medicine, 131, 133-143. doi:10.1016/j.freeradbiomed.2018.11.026 | es_ES |
dc.description.references | Castaño, C., Vignoni, M., Vicendo, P., Oliveros, E., & Thomas, A. H. (2016). Degradation of tyrosine and tryptophan residues of peptides by type I photosensitized oxidation. Journal of Photochemistry and Photobiology B: Biology, 164, 226-235. doi:10.1016/j.jphotobiol.2016.09.024 | es_ES |
dc.description.references | Brahmia, O., & Richard, C. (2003). Phototransformation of 1,4-naphthoquinone in aqueous solution. Photochemical & Photobiological Sciences, 2(10), 1038. doi:10.1039/b305376h | es_ES |
dc.description.references | Görner, H. (2007). Oxygen Uptake upon Photolysis of 1,4-Benzoquinones and 1,4-Naphthoquinones in Air-Saturated Aqueous Solution in the Presence of Formate, Amines, Ascorbic Acid, and Alcohols. The Journal of Physical Chemistry A, 111(15), 2814-2819. doi:10.1021/jp0683061 | es_ES |
dc.description.references | Görner, H. (2005). Photoreactions of 1,4-Naphthoquinones: Effects of Substituents and Water on the Intermediates and Reactivity¶. Photochemistry and Photobiology, 81(2), 376. doi:10.1562/2004-08-11-ra-270.1 | es_ES |
dc.description.references | Itoh, T. (1995). Low-Lying Electronic States, Spectroscopy, and Photophysics of Linear Para Acenequinones. Chemical Reviews, 95(7), 2351-2368. doi:10.1021/cr00039a004 | es_ES |
dc.description.references | Bruce, J. M., Chaudhry, A.-U.-H., & Dawes, K. (1974). Light-induced and related reactions of quinones. Part X. Further studies with hydroxymethyl-, vinyl-, and (2-ethoxycarbonylethyl)-1,4-benzoquinones. Journal of the Chemical Society, Perkin Transactions 1, 288. doi:10.1039/p19740000288 | es_ES |
dc.description.references | Teixeira, R. I., dos Santos, I. C., Garden, S. J., Carneiro, P. F., Ferreira, V. F., & de Lucas, N. C. (2017). Photosensitizing Properties of 6H -Dibenzo[b, h ]xanthene Derivatives. ChemistrySelect, 2(35), 11732-11738. doi:10.1002/slct.201702649 | es_ES |
dc.description.references | Mitchell, L. J., Lewis, W., & Moody, C. J. (2013). Solar photochemistry: optimisation of the photo Friedel–Crafts acylation of naphthoquinones. Green Chemistry, 15(10), 2830. doi:10.1039/c3gc41477a | es_ES |
dc.description.references | Ando, Y., & Suzuki, K. (2018). Photoredox Reactions of Quinones. Chemistry - A European Journal, 24(60), 15955-15964. doi:10.1002/chem.201801064 | es_ES |
dc.description.references | Suzuki, K., Ando, Y., & Matsumoto, T. (2017). Intramolecular Photoredox Reaction of Naphthoquinone Derivatives. Synlett, 28(09), 1040-1045. doi:10.1055/s-0036-1589001 | es_ES |
dc.description.references | Ando, Y., Hanaki, A., Sasaki, R., Ohmori, K., & Suzuki, K. (2017). Stereospecificity in Intramolecular Photoredox Reactions of Naphthoquinones: Enantioselective Total Synthesis of (−)-Spiroxin C. Angewandte Chemie International Edition, 56(38), 11460-11465. doi:10.1002/anie.201705562 | es_ES |
dc.description.references | Zhou, Q., Wei, Y., Liu, X., Chen, L., Zhou, X., & Liu, S. (2017). Photochemical Reaction Between 1,2-Naphthoquinone and Adenine in Binary Water-Acetonitrile Solutions. Photochemistry and Photobiology, 94(1), 61-68. doi:10.1111/php.12808 | es_ES |
dc.description.references | Szymczak, A. M., Podsiadły, R., Podemska, K., & Sokołowska, J. (2013). Dyes based on a 1,4-naphthoquinone skeleton as new type II photoinitiators for radical polymerisation. Coloration Technology, 129(4), 284-288. doi:10.1111/cote.12030 | es_ES |
dc.description.references | Görner, H. (2011). Photoreduction of nitro-1,4-naphthoquinones in solution. Journal of Photochemistry and Photobiology A: Chemistry, 224(1), 135-140. doi:10.1016/j.jphotochem.2011.09.016 | es_ES |
dc.description.references | Bose, A., Dey, D., & Basu, S. (2007). Structure-dependent switchover of reaction modes: A laser flash photolysis and magnetic field effect study. Journal of Photochemistry and Photobiology A: Chemistry, 186(2-3), 130-134. doi:10.1016/j.jphotochem.2006.07.021 | es_ES |
dc.description.references | Jornet, D., Bosca, F., Andreu, J. M., Domingo, L. R., Tormos, R., & Miranda, M. A. (2016). Analysis of mebendazole binding to its target biomolecule by laser flash photolysis. Journal of Photochemistry and Photobiology B: Biology, 155, 1-6. doi:10.1016/j.jphotobiol.2015.12.003 | es_ES |
dc.description.references | Netto-Ferreira, J. C., Lhiaubet-Vallet, V., Bernardes, B. O., Ferreira, A. B. B., & Miranda, M. Á. (2008). Characterization, reactivity and photosensitizing properties of the triplet excited state of α-lapachone. Physical Chemistry Chemical Physics, 10(44), 6645. doi:10.1039/b810413a | es_ES |
dc.description.references | Freire, C. P. V., Ferreira, S. B., de Oliveira, N. S. M., Matsuura, A. B. J., Gama, I. L., da Silva, F. de C., … Ferreira, V. F. (2010). Synthesis and biological evaluation of substituted α- and β-2,3-dihydrofuran naphthoquinones as potent anticandidal agents. MedChemComm, 1(3), 229. doi:10.1039/c0md00074d | es_ES |
dc.description.references | Da Silva Júnior, E. N., de Souza, M. C. B. V., Fernandes, M. C., Menna-Barreto, R. F. S., Pinto, M. do C. F. R., de Assis Lopes, F., … de Castro, S. L. (2008). Synthesis and anti-Trypanosoma cruzi activity of derivatives from nor-lapachones and lapachones. Bioorganic & Medicinal Chemistry, 16(9), 5030-5038. doi:10.1016/j.bmc.2008.03.032 | es_ES |
dc.description.references | Ferreira, F. da R., Ferreira, S. B., Araújo, A. J., Marinho Filho, J. D. B., Pessoa, C., Moraes, M. O., … Goulart, M. O. F. (2013). Arylated α- and β-dihydrofuran naphthoquinones: Electrochemical parameters, evaluation of antitumor activity and their correlation. Electrochimica Acta, 110, 634-640. doi:10.1016/j.electacta.2013.04.148 | es_ES |
dc.description.references | De Lucas, N. C., Corrêa, R. J., Garden, S. J., Santos, G., Rodrigues, R., Carvalho, C. E. M., … Miranda, M. A. (2012). Singlet oxygen production by pyrano and furano 1,4-naphthoquinones in non-aqueous medium. Photochemical & Photobiological Sciences, 11(7), 1201. doi:10.1039/c2pp05412d | es_ES |
dc.description.references | Jackson, E. L. (1952). O-p-Toluenesulfonyl-L-tyrosine, Its N-Acetyl and N-Benzoyl Derivatives. Journal of the American Chemical Society, 74(3), 837-838. doi:10.1021/ja01123a513 | es_ES |
dc.description.references | Huang, H. T., & Niemann, C. (1951). The Kinetics of the α-Chymotrypsin Catalyzed Hydrolysis of Acetyl- and Nicotinyl-L-tryptophanamide in Aqueous Solutions at 25° and pH 7.91. Journal of the American Chemical Society, 73(4), 1541-1548. doi:10.1021/ja01148a040 | es_ES |
dc.description.references | Silva, F. de C. da, Ferreira, S. B., Kaiser, C. R., Pinto, A. C., & Ferreira, V. F. (2009). Synthesis of α- and β-lapachone derivatives from hetero diels-alder trapping of alkyl and aryl o-quinone methides. Journal of the Brazilian Chemical Society, 20(8), 1478-1482. doi:10.1590/s0103-50532009000800014 | es_ES |
dc.description.references | Netto-Ferreira, J. C., Bernardes, B., Ferreira, A. B. B., & Miranda, M. Á. (2008). Laser flash photolysis study of the triplet reactivity of β-lapachones. Photochemical & Photobiological Sciences, 7(4), 467. doi:10.1039/b716104b | es_ES |
dc.description.references | Scaiano, J. C. (1982). Laser flash photolysis studies of the reactions of some 1,4-biradicals. Accounts of Chemical Research, 15(8), 252-258. doi:10.1021/ar00080a004 | es_ES |
dc.description.references | De Lucas, N. C., Silva, M. T., Gege, C., & Netto-Ferreira, J. C. (1999). Steady state and laser flash photolysis of acenaphthenequinone in the presence of olefins. Journal of the Chemical Society, Perkin Transactions 2, (12), 2795-2801. doi:10.1039/a904156g | es_ES |
dc.description.references | De Lucas, N. C., Ruis, C. P., Teixeira, R. I., Marçal, L. L., Garden, S. J., Corrêa, R. J., … Ferreira, V. F. (2014). Photosensitizing properties of triplet furano and pyrano-1,2-naphthoquinones. Journal of Photochemistry and Photobiology A: Chemistry, 276, 16-30. doi:10.1016/j.jphotochem.2013.11.010 | es_ES |
dc.description.references | Monti, S., & Manet, I. (2014). Supramolecular photochemistry of drugs in biomolecular environments. Chem. Soc. Rev., 43(12), 4051-4067. doi:10.1039/c3cs60402k | es_ES |
dc.description.references | Bacellar, I., Tsubone, T., Pavani, C., & Baptista, M. (2015). Photodynamic Efficiency: From Molecular Photochemistry to Cell Death. International Journal of Molecular Sciences, 16(9), 20523-20559. doi:10.3390/ijms160920523 | es_ES |
dc.description.references | Davies, M. J. (2003). Singlet oxygen-mediated damage to proteins and its consequences. Biochemical and Biophysical Research Communications, 305(3), 761-770. doi:10.1016/s0006-291x(03)00817-9 | es_ES |
dc.description.references | Tsentalovich, Y. P., Snytnikova, O. A., & Sagdeev, R. Z. (2004). Properties of excited states of aqueous tryptophan. Journal of Photochemistry and Photobiology A: Chemistry, 162(2-3), 371-379. doi:10.1016/s1010-6030(03)00376-9 | es_ES |
dc.description.references | Netto-Ferreira, J. C., Lhiaubet-Vallet, V., Silva, A. R. da, Silva, A. M. da, Ferreira, A. B. B., & Miranda, M. A. (2010). The photochemical reactivity of triplet β-lapachone-3-sulfonic acid towards biological substrates. Journal of the Brazilian Chemical Society, 21(6), 966-972. doi:10.1590/s0103-50532010000600004 | es_ES |
dc.description.references | Merenyi, G., Lind, J., & Shen, X. (1988). Electron transfer from indoles, phenol, and sulfite (SO32-) to chlorine dioxide (ClO2.). The Journal of Physical Chemistry, 92(1), 134-137. doi:10.1021/j100312a029 | es_ES |
dc.description.references | Das, P. K., Encinas, M. V., & Scaiano, J. C. (1981). Laser flash photolysis study of the reactions of carbonyl triplets with phenols and photochemistry of p-hydroxypropiophenone. Journal of the American Chemical Society, 103(14), 4154-4162. doi:10.1021/ja00404a029 | es_ES |
dc.description.references | Das, P. K., & Bhattacharyya, S. N. (1981). Laser flash photolysis study of electron transfer reactions of phenolate ions with aromatic carbonyl triplets. The Journal of Physical Chemistry, 85(10), 1391-1395. doi:10.1021/j150610a024 | es_ES |
dc.description.references | Das, P. K., Encinas, M. V., Steenken, S., & Scaiano, J. C. (1981). Reaction of tert-butoxy radicals with phenols. Comparison with the reactions of carbonyl triplets. Journal of the American Chemical Society, 103(14), 4162-4166. doi:10.1021/ja00404a030 | es_ES |
dc.description.references | De Lucas, N. C., Correa, R. J., Albuquerque, A. C. C., Firme, C. L., Garden, S. J., Bertoti, A. R., & Netto-Ferreira, J. C. (2007). Laser Flash Photolysis of 1,2-Diketopyracene and a Theoretical Study of the Phenolic Hydrogen Abstraction by the Triplet State of Cyclic α-Diketones. The Journal of Physical Chemistry A, 111(6), 1117-1122. doi:10.1021/jp065675o | es_ES |
dc.description.references | De Lucas, N. C., Elias, M. M., Firme, C. L., Corrêa, R. J., Garden, S. J., Netto-Ferreira, J. C., & Nicodem, D. E. (2009). A combined laser flash photolysis, density functional theory and atoms in molecules study of the photochemical hydrogen abstraction by pyrene-4,5-dione. Journal of Photochemistry and Photobiology A: Chemistry, 201(1), 1-7. doi:10.1016/j.jphotochem.2008.08.014 | es_ES |
dc.description.references | Pérez-Prieto, J., Stiriba, S.-E., Boscá, F., Lahoz, A., Domingo, L. R., Mourabit, F., … Miranda, M. A. (2004). Geometrical Effects on the Intramolecular Quenching of π,π* Aromatic Ketones by Phenols and Indoles. The Journal of Organic Chemistry, 69(25), 8618-8625. doi:10.1021/jo048973v | es_ES |
dc.description.references | Morozova, O. B., Panov, M. S., Fishman, N. N., & Yurkovskaya, A. V. (2018). Electron transfer vs. proton-coupled electron transfer as the mechanism of reaction between amino acids and triplet-excited benzophenones revealed by time-resolved CIDNP. Physical Chemistry Chemical Physics, 20(32), 21127-21135. doi:10.1039/c8cp03591a | es_ES |
dc.description.references | Saouma, C. T., & Mayer, J. M. (2014). Do spin state and spin density affect hydrogen atom transfer reactivity? Chem. Sci., 5(1), 21-31. doi:10.1039/c3sc52664j | es_ES |
dc.description.references | Hsieh, C.-C., Jiang, C.-M., & Chou, P.-T. (2010). Recent Experimental Advances on Excited-State Intramolecular Proton Coupled Electron Transfer Reaction. Accounts of Chemical Research, 43(10), 1364-1374. doi:10.1021/ar1000499 | es_ES |
dc.description.references | Herner, A., & Lin, Q. (2015). Photo-Triggered Click Chemistry for Biological Applications. Topics in Current Chemistry, 374(1). doi:10.1007/s41061-015-0002-2 | es_ES |
dc.description.references | Gagliardi, C. J., Westlake, B. C., Kent, C. A., Paul, J. J., Papanikolas, J. M., & Meyer, T. J. (2010). Integrating proton coupled electron transfer (PCET) and excited states. Coordination Chemistry Reviews, 254(21-22), 2459-2471. doi:10.1016/j.ccr.2010.03.001 | es_ES |
dc.description.references | Darcy, J. W., Koronkiewicz, B., Parada, G. A., & Mayer, J. M. (2018). A Continuum of Proton-Coupled Electron Transfer Reactivity. Accounts of Chemical Research, 51(10), 2391-2399. doi:10.1021/acs.accounts.8b00319 | es_ES |
dc.description.references | Pizano, A. A., Lutterman, D. A., Holder, P. G., Teets, T. S., Stubbe, J., & Nocera, D. G. (2011). Photo-ribonucleotide reductase 2 by selective cysteine labeling with a radical phototrigger. Proceedings of the National Academy of Sciences, 109(1), 39-43. doi:10.1073/pnas.1115778108 | es_ES |
dc.description.references | Gentry, E. C., & Knowles, R. R. (2016). Synthetic Applications of Proton-Coupled Electron Transfer. Accounts of Chemical Research, 49(8), 1546-1556. doi:10.1021/acs.accounts.6b00272 | es_ES |
dc.description.references | Hammes-Schiffer, S. (2015). Proton-Coupled Electron Transfer: Moving Together and Charging Forward. Journal of the American Chemical Society, 137(28), 8860-8871. doi:10.1021/jacs.5b04087 | es_ES |
dc.description.references | Savéant, J.-M. (2014). Concerted Proton-Electron Transfers: Fundamentals and Recent Developments. Annual Review of Analytical Chemistry, 7(1), 537-560. doi:10.1146/annurev-anchem-071213-020315 | es_ES |
dc.description.references | Mayer, J. M., Rhile, I. J., Larsen, F. B., Mader, E. A., Markle, T. F., & DiPasquale, A. G. (2006). Models for Proton-coupled Electron Transfer in Photosystem II. Photosynthesis Research, 87(1), 3-20. doi:10.1007/s11120-005-8164-3 | es_ES |
dc.description.references | Concepcion, J. J., Brennaman, M. K., Deyton, J. R., Lebedeva, N. V., Forbes, M. D. E., Papanikolas, J. M., & Meyer, T. J. (2007). Excited-State Quenching by Proton-Coupled Electron Transfer. Journal of the American Chemical Society, 129(22), 6968-6969. doi:10.1021/ja069049g | es_ES |
dc.description.references | Irebo, T., Johansson, O., & Hammarström, L. (2008). The Rate Ladder of Proton-Coupled Tyrosine Oxidation in Water: A Systematic Dependence on Hydrogen Bonds and Protonation State. Journal of the American Chemical Society, 130(29), 9194-9195. doi:10.1021/ja802076v | es_ES |
dc.description.references | Ravensbergen, J., Brown, C. L., Moore, G. F., Frese, R. N., van Grondelle, R., Gust, D., … Kennis, J. T. M. (2015). Kinetic isotope effect of proton-coupled electron transfer in a hydrogen bonded phenol–pyrrolidino[60]fullerene. Photochemical & Photobiological Sciences, 14(12), 2147-2150. doi:10.1039/c5pp00259a | es_ES |
dc.description.references | Markle, T. F., Darcy, J. W., & Mayer, J. M. (2018). A new strategy to efficiently cleave and form C–H bonds using proton-coupled electron transfer. Science Advances, 4(7). doi:10.1126/sciadv.aat5776 | es_ES |
dc.description.references | Manbeck, G. F., Fujita, E., & Concepcion, J. J. (2016). Proton-Coupled Electron Transfer in a Strongly Coupled Photosystem II-Inspired Chromophore–Imidazole–Phenol Complex: Stepwise Oxidation and Concerted Reduction. Journal of the American Chemical Society, 138(36), 11536-11549. doi:10.1021/jacs.6b03506 | es_ES |
dc.description.references | Amada, I., Yamaji, M., Sase, M., & Shizuka, H. (1995). Laser flash photolysis studies on hydrogen atom abstraction from phenol by triplet naphthoquinones in acetonitrile. Journal of the Chemical Society, Faraday Transactions, 91(17), 2751. doi:10.1039/ft9959102751 | es_ES |
dc.description.references | Craggs, J., Kirk, S. H., & Ahmad, S. I. (1994). Synergistic action of near-UV and phenylalanine, tyrosine or tryptophan on the inactivation of phage T7: Role of superoxide radicals and hydrogen peroxide. Journal of Photochemistry and Photobiology B: Biology, 24(2), 123-128. doi:10.1016/1011-1344(94)07014-8 | es_ES |
dc.description.references | Ouyang, D., & Hirakawa, K. (2017). Photosensitized enzyme deactivation and protein oxidation by axial-substituted phosphorus(V) tetraphenylporphyrins. Journal of Photochemistry and Photobiology B: Biology, 175, 125-131. doi:10.1016/j.jphotobiol.2017.08.036 | es_ES |
dc.description.references | Thomas, A. H., Zurbano, B. N., Lorente, C., Santos, J., Roman, E. A., & Laura Dántola, M. (2014). Chemical changes in bovine serum albumin photoinduced by pterin. Journal of Photochemistry and Photobiology B: Biology, 141, 262-268. doi:10.1016/j.jphotobiol.2014.10.007 | es_ES |
dc.description.references | Kerwin, B. A., & Remmele, R. L. (2007). Protect from Light: Photodegradation and Protein Biologics. Journal of Pharmaceutical Sciences, 96(6), 1468-1479. doi:10.1002/jps.20815 | es_ES |
dc.description.references | Pérez-Prieto, J., Boscá, F., Galian, R. E., Lahoz, A., Domingo, L. R., & Miranda, M. A. (2003). Photoreaction between 2-Benzoylthiophene and Phenol or Indole. The Journal of Organic Chemistry, 68(13), 5104-5113. doi:10.1021/jo034225e | es_ES |
dc.description.references | De Lucas, N. C., Fraga, H. S., Cardoso, C. P., Corrêa, R. J., Garden, S. J., & Netto-Ferreira, J. C. (2010). A laser flash photolysis and theoretical study of hydrogen abstraction from phenols by triplet α-naphthoflavone. Physical Chemistry Chemical Physics, 12(36), 10746. doi:10.1039/c002738c | es_ES |