- -

A photochemical and theoretical study of the triplet reactivity of furano- and pyrano-1,4-naphthoquionones towards tyrosine and tryptophan derivatives

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A photochemical and theoretical study of the triplet reactivity of furano- and pyrano-1,4-naphthoquionones towards tyrosine and tryptophan derivatives

Mostrar el registro completo del ítem

Teixeira, RI.; Goulart, JS.; Correa, RJ.; Garden, SJ.; Ferreira, SB.; Netto-Ferreira, JC.; Ferreira, VF.... (2019). A photochemical and theoretical study of the triplet reactivity of furano- and pyrano-1,4-naphthoquionones towards tyrosine and tryptophan derivatives. RSC Advances. 9(24):13386-13397. https://doi.org/10.1039/c9ra01939a

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/160682

Ficheros en el ítem

Metadatos del ítem

Título: A photochemical and theoretical study of the triplet reactivity of furano- and pyrano-1,4-naphthoquionones towards tyrosine and tryptophan derivatives
Autor: Teixeira, Rodolfo I. Goulart, Juliana S. Correa, Rodrigo J. Garden, Simon J. Ferreira, Sabrina B. Netto-Ferreira, Jose Carlos Ferreira, Vitor F. Miro, Paula Marín García, Mª Luisa Miranda Alonso, Miguel Ángel De Lucas, Nanci C.
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
[EN] The photochemical reactivity of the triplet state of pyrano- and furano-1,4-naphthoquinone derivatives ( 1 and 2) has been examined employing nanosecond laser flash photolysis. The quinone triplets were efficiently ...[+]
Derechos de uso: Reconocimiento - No comercial (by-nc)
Fuente:
RSC Advances. (eissn: 2046-2069 )
DOI: 10.1039/c9ra01939a
Editorial:
The Royal Society of Chemistry
Versión del editor: https://doi.org/10.1039/c9ra01939a
Código del Proyecto:
info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2013%2F005/ES/ESPECIES FOTOACTIVAS Y SU INTERACCION CON BIOMOLECULAS/
Agradecimientos:
The authors thank the following Brazilian agencies Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES), Conselho Nacional de Desenvolvimento Cientificoe Tecnologico (CNPq) and Fundacao de Amparo a Pesquisa ...[+]
Tipo: Artículo

References

Sieveking, I., Thomas, P., Estévez, J. C., Quiñones, N., Cuéllar, M. A., Villena, J., … Salas, C. O. (2014). 2-Phenylaminonaphthoquinones and related compounds: Synthesis, trypanocidal and cytotoxic activities. Bioorganic & Medicinal Chemistry, 22(17), 4609-4620. doi:10.1016/j.bmc.2014.07.030

Louvis, A. da R., Silva, N. A. A., Semaan, F. S., da Silva, F. de C., Saramago, G., de Souza, L. C. S. V., … Martins, D. de L. (2016). Synthesis, characterization and biological activities of 3-aryl-1,4-naphthoquinones – green palladium-catalysed Suzuki cross coupling. New Journal of Chemistry, 40(9), 7643-7656. doi:10.1039/c6nj00872k

Lara, L. S., Moreira, C. S., Calvet, C. M., Lechuga, G. C., Souza, R. S., Bourguignon, S. C., … Pereira, M. C. S. (2018). Efficacy of 2-hydroxy-3-phenylsulfanylmethyl-[1,4]-naphthoquinone derivatives against different Trypanosoma cruzi discrete type units: Identification of a promising hit compound. European Journal of Medicinal Chemistry, 144, 572-581. doi:10.1016/j.ejmech.2017.12.052 [+]
Sieveking, I., Thomas, P., Estévez, J. C., Quiñones, N., Cuéllar, M. A., Villena, J., … Salas, C. O. (2014). 2-Phenylaminonaphthoquinones and related compounds: Synthesis, trypanocidal and cytotoxic activities. Bioorganic & Medicinal Chemistry, 22(17), 4609-4620. doi:10.1016/j.bmc.2014.07.030

Louvis, A. da R., Silva, N. A. A., Semaan, F. S., da Silva, F. de C., Saramago, G., de Souza, L. C. S. V., … Martins, D. de L. (2016). Synthesis, characterization and biological activities of 3-aryl-1,4-naphthoquinones – green palladium-catalysed Suzuki cross coupling. New Journal of Chemistry, 40(9), 7643-7656. doi:10.1039/c6nj00872k

Lara, L. S., Moreira, C. S., Calvet, C. M., Lechuga, G. C., Souza, R. S., Bourguignon, S. C., … Pereira, M. C. S. (2018). Efficacy of 2-hydroxy-3-phenylsulfanylmethyl-[1,4]-naphthoquinone derivatives against different Trypanosoma cruzi discrete type units: Identification of a promising hit compound. European Journal of Medicinal Chemistry, 144, 572-581. doi:10.1016/j.ejmech.2017.12.052

Medeiros, C. S., Pontes-Filho, N. T., Camara, C. A., Lima-Filho, J. V., Oliveira, P. C., Lemos, S. A., … Neves, R. P. (2010). Antifungal activity of the naphthoquinone beta-lapachone against disseminated infection with Cryptococcus neoformans var. neoformans in dexamethasone-immunosuppressed Swiss mice. Brazilian Journal of Medical and Biological Research, 43(4), 345-349. doi:10.1590/s0100-879x2010007500012

Riffel, A., Medina, L. F., Stefani, V., Santos, R. C., Bizani, D., & Brandelli, A. (2002). In vitro antimicrobial activity of a new series of 1,4-naphthoquinones. Brazilian Journal of Medical and Biological Research, 35(7), 811-818. doi:10.1590/s0100-879x2002000700008

Santos, M. M. M., Faria, N., Iley, J., Coles, S. J., Hursthouse, M. B., Martins, M. L., & Moreira, R. (2010). Reaction of naphthoquinones with substituted nitromethanes. Facile synthesis and antifungal activity of naphtho[2,3-d]isoxazole-4,9-diones. Bioorganic & Medicinal Chemistry Letters, 20(1), 193-195. doi:10.1016/j.bmcl.2009.10.137

Tandon, V. K., Maurya, H. K., Verma, M. K., Kumar, R., & Shukla, P. K. (2010). ‘On water’ assisted synthesis and biological evaluation of nitrogen and sulfur containing hetero-1,4-naphthoquinones as potent antifungal and antibacterial agents. European Journal of Medicinal Chemistry, 45(6), 2418-2426. doi:10.1016/j.ejmech.2010.02.023

Sánchez-Calvo, J. M., Barbero, G. R., Guerrero-Vásquez, G., Durán, A. G., Macías, M., Rodríguez-Iglesias, M. A., … Macías, F. A. (2016). Synthesis, antibacterial and antifungal activities of naphthoquinone derivatives: a structure–activity relationship study. Medicinal Chemistry Research, 25(6), 1274-1285. doi:10.1007/s00044-016-1550-x

Teixeira, M. J., de Almeida, Y. M., Viana, J. R., Holanda Filha, J. G., Rodrigues, T. P., Prata, J. R. C., … Pompeu, M. M. L. (2001). In vitro andin vivo Leishmanicidal activity of 2-hydroxy-3-(3-methyl-2-butenyl)-1,4-naphthoquinone (lapachol). Phytotherapy Research, 15(1), 44-48. doi:10.1002/1099-1573(200102)15:1<44::aid-ptr685>3.0.co;2-1

Tavares, G. de S. V., Mendonça, D. V. C., Lage, D. P., Granato, J. da T., Ottoni, F. M., Ludolf, F., … Coelho, E. A. F. (2018). Antileishmanial Activity, Cytotoxicity and Mechanism of Action of Clioquinol Against Leishmania infantum and Leishmania amazonensis Species. Basic & Clinical Pharmacology & Toxicology, 123(3), 236-246. doi:10.1111/bcpt.12990

Naujorks, A. A. dos S., da Silva, A. O., Lopes, R. da S., de Albuquerque, S., Beatriz, A., Marques, M. R., & de Lima, D. P. (2015). Novel naphthoquinone derivatives and evaluation of their trypanocidal and leishmanicidal activities. Organic & Biomolecular Chemistry, 13(2), 428-437. doi:10.1039/c4ob01869a

De Araújo, M. V., David, C. C., Neto, J. C., de Oliveira, L. A. P. L., da Silva, K. C. J., dos Santos, J. M., … Alexandre-Moreira, M. S. (2017). Evaluation on the leishmanicidal activity of 2-N,N′-dialkylamino-1,4-naphthoquinone derivatives. Experimental Parasitology, 176, 46-51. doi:10.1016/j.exppara.2017.02.004

Ju Woo, H., Jun, D. Y., Lee, J. Y., Park, H. S., Woo, M. H., Park, S. J., … Kim, Y. H. (2017). Anti-inflammatory action of 2-carbomethoxy-2,3-epoxy-3-prenyl-1,4-naphthoquinone (CMEP-NQ) suppresses both the MyD88-dependent and TRIF-dependent pathways of TLR4 signaling in LPS-stimulated RAW264.7 cells. Journal of Ethnopharmacology, 205, 103-115. doi:10.1016/j.jep.2017.04.029

Milackova, I., Prnova, M. S., Majekova, M., Sotnikova, R., Stasko, M., Kovacikova, L., … Stefek, M. (2014). 2-Chloro-1,4-naphthoquinone derivative of quercetin as an inhibitor of aldose reductase and anti-inflammatory agent. Journal of Enzyme Inhibition and Medicinal Chemistry, 30(1), 107-113. doi:10.3109/14756366.2014.892935

Soares, A. S., Barbosa, F. L., Rüdiger, A. L., Hughes, D. L., Salvador, M. J., Zampronio, A. R., & Stefanello, M. É. A. (2017). Naphthoquinones of Sinningia reitzii and Anti-inflammatory/Antinociceptive Activities of 8-Hydroxydehydrodunnione. Journal of Natural Products, 80(6), 1837-1843. doi:10.1021/acs.jnatprod.6b01186

Hatae, N., Nakamura, J., Okujima, T., Ishikura, M., Abe, T., Hibino, S., … Toyota, E. (2013). Effect of the orthoquinone moiety in 9,10-phenanthrenequinone on its ability to induce apoptosis in HCT-116 and HL-60 cells. Bioorganic & Medicinal Chemistry Letters, 23(16), 4637-4640. doi:10.1016/j.bmcl.2013.06.015

Marastoni, M., Trapella, C., Scotti, A., Fantinati, A., Ferretti, V., Marzola, E., … Preti, D. (2017). Naphthoquinone amino acid derivatives, synthesis and biological activity as proteasome inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 32(1), 865-877. doi:10.1080/14756366.2017.1334649

Qiu, H.-Y., Wang, P.-F., Lin, H.-Y., Tang, C.-Y., Zhu, H.-L., & Yang, Y.-H. (2017). Naphthoquinones: A continuing source for discovery of therapeutic antineoplastic agents. Chemical Biology & Drug Design, 91(3), 681-690. doi:10.1111/cbdd.13141

Romão, L., do Canto, V. P., Netz, P. A., Moura-Neto, V., Pinto, Â. C., & Follmer, C. (2018). Conjugation with polyamines enhances the antitumor activity of naphthoquinones against human glioblastoma cells. Anti-Cancer Drugs, 29(6), 520-529. doi:10.1097/cad.0000000000000619

Poma, P., Labbozzetta, M., Notarbartolo, M., Bruno, M., Maggio, A., Rosselli, S., … Zito, P. (2018). Chemical composition, in vitro antitumor and pro-oxidant activities of Glandora rosmarinifolia (Boraginaceae) essential oil. PLOS ONE, 13(5), e0196947. doi:10.1371/journal.pone.0196947

Prati, F., Bergamini, C., Molina, M. T., Falchi, F., Cavalli, A., Kaiser, M., … Bolognesi, M. L. (2015). 2-Phenoxy-1,4-naphthoquinones: From a Multitarget Antitrypanosomal to a Potential Antitumor Profile. Journal of Medicinal Chemistry, 58(16), 6422-6434. doi:10.1021/acs.jmedchem.5b00748

Galm, U., Hager, M. H., Van Lanen, S. G., Ju, J., Thorson, J. S., & Shen, B. (2005). Antitumor Antibiotics:  Bleomycin, Enediynes, and Mitomycin. Chemical Reviews, 105(2), 739-758. doi:10.1021/cr030117g

Gewirtz, D. (1999). A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochemical Pharmacology, 57(7), 727-741. doi:10.1016/s0006-2952(98)00307-4

Wolkenberg, S. E., & Boger, D. L. (2002). Mechanisms of in Situ Activation for DNA-Targeting Antitumor Agents. Chemical Reviews, 102(7), 2477-2496. doi:10.1021/cr010046q

Krishnan, P., & Bastow, K. F. (2001). Novel mechanism of cellular DNA topoisomerase II inhibition by the pyranonaphthoquinone derivatives α-lapachone and β-lapachone. Cancer Chemotherapy and Pharmacology, 47(3), 187-198. doi:10.1007/s002800000221

Pinto, A. V., Ferreira, V. F., Capella, R. S., Gilbert, B., Pinto, M. C. R., & Da Silva, J. S. (1987). Activity of some naphthoquinones on blood stream forms of Trypanosoma cruzi. Transactions of the Royal Society of Tropical Medicine and Hygiene, 81(4), 609-610. doi:10.1016/0035-9203(87)90427-5

De Moura, K. C. G., Emery, F. S., Neves-Pinto, C., Pinto, M. do C. F. R., Dantas, A. P., Salomão, K., … Pinto, A. V. (2001). Trypanocidal activity of isolated naphthoquinones from Tabebuia and some heterocyclic derivatives: a review from an interdisciplinary study. Journal of the Brazilian Chemical Society, 12(3). doi:10.1590/s0103-50532001000300003

Salustiano, E. J. S., Netto, C. D., Fernandes, R. F., da Silva, A. J. M., Bacelar, T. S., Castro, C. P., … Costa, P. R. R. (2009). Comparison of the cytotoxic effect of lapachol, α-lapachone and pentacyclic 1,4-naphthoquinones on human leukemic cells. Investigational New Drugs, 28(2), 139-144. doi:10.1007/s10637-009-9231-y

Moore, H. W. (1977). Bioactivation as a Model for Drug Design Bioreductive Alkylation. Science, 197(4303), 527-532. doi:10.1126/science.877572

Docampo, R., Cruz, F. S., Boveris, A., Muniz, R. P. A., & Esquivel, D. M. S. (1979). β-lapachone enhancement of lipid peroxidation and superoxide anion and hydrogen peroxide formation by Sarcoma 180 ascites tumor cells. Biochemical Pharmacology, 28(6), 723-728. doi:10.1016/0006-2952(79)90348-4

Powis, G. (1987). Metabolism and reactions of quinoid anticancer agents. Pharmacology & Therapeutics, 35(1-2), 57-162. doi:10.1016/0163-7258(87)90105-7

Santos, D. M., Santos, M. M. M., Moreira, R., Solá, S., & Rodrigues, C. M. P. (2012). Synthetic Condensed 1,4-naphthoquinone Derivative Shifts Neural Stem Cell Differentiation by Regulating Redox State. Molecular Neurobiology, 47(1), 313-324. doi:10.1007/s12035-012-8353-y

Baptista, M. S., Cadet, J., Di Mascio, P., Ghogare, A. A., Greer, A., Hamblin, M. R., … Yoshimura, T. M. (2017). Type I and Type II Photosensitized Oxidation Reactions: Guidelines and Mechanistic Pathways. Photochemistry and Photobiology, 93(4), 912-919. doi:10.1111/php.12716

Abrahamse, H., & Hamblin, M. R. (2016). New photosensitizers for photodynamic therapy. Biochemical Journal, 473(4), 347-364. doi:10.1042/bj20150942

Davies, M. J., & Truscott, R. J. W. (2001). Photo-oxidation of proteins and its role in cataractogenesis. Journal of Photochemistry and Photobiology B: Biology, 63(1-3), 114-125. doi:10.1016/s1011-1344(01)00208-1

Østdal, H., Davies, M. J., & Andersen, H. J. (2002). Reaction between protein radicals and other biomolecules. Free Radical Biology and Medicine, 33(2), 201-209. doi:10.1016/s0891-5849(02)00785-2

Pattison, D. I., Rahmanto, A. S., & Davies, M. J. (2012). Photo-oxidation of proteins. Photochem. Photobiol. Sci., 11(1), 38-53. doi:10.1039/c1pp05164d

Ananieva, E. (2015). Targeting amino acid metabolism in cancer growth and anti-tumor immune response. World Journal of Biological Chemistry, 6(4), 281. doi:10.4331/wjbc.v6.i4.281

Silva, E., Barrias, P., Fuentes-Lemus, E., Tirapegui, C., Aspee, A., Carroll, L., … López-Alarcón, C. (2019). Riboflavin-induced Type 1 photo-oxidation of tryptophan using a high intensity 365 nm light emitting diode. Free Radical Biology and Medicine, 131, 133-143. doi:10.1016/j.freeradbiomed.2018.11.026

Castaño, C., Vignoni, M., Vicendo, P., Oliveros, E., & Thomas, A. H. (2016). Degradation of tyrosine and tryptophan residues of peptides by type I photosensitized oxidation. Journal of Photochemistry and Photobiology B: Biology, 164, 226-235. doi:10.1016/j.jphotobiol.2016.09.024

Brahmia, O., & Richard, C. (2003). Phototransformation of 1,4-naphthoquinone in aqueous solution. Photochemical & Photobiological Sciences, 2(10), 1038. doi:10.1039/b305376h

Görner, H. (2007). Oxygen Uptake upon Photolysis of 1,4-Benzoquinones and 1,4-Naphthoquinones in Air-Saturated Aqueous Solution in the Presence of Formate, Amines, Ascorbic Acid, and Alcohols. The Journal of Physical Chemistry A, 111(15), 2814-2819. doi:10.1021/jp0683061

Görner, H. (2005). Photoreactions of 1,4-Naphthoquinones: Effects of Substituents and Water on the Intermediates and Reactivity¶. Photochemistry and Photobiology, 81(2), 376. doi:10.1562/2004-08-11-ra-270.1

Itoh, T. (1995). Low-Lying Electronic States, Spectroscopy, and Photophysics of Linear Para Acenequinones. Chemical Reviews, 95(7), 2351-2368. doi:10.1021/cr00039a004

Bruce, J. M., Chaudhry, A.-U.-H., & Dawes, K. (1974). Light-induced and related reactions of quinones. Part X. Further studies with hydroxymethyl-, vinyl-, and (2-ethoxycarbonylethyl)-1,4-benzoquinones. Journal of the Chemical Society, Perkin Transactions 1, 288. doi:10.1039/p19740000288

Teixeira, R. I., dos Santos, I. C., Garden, S. J., Carneiro, P. F., Ferreira, V. F., & de Lucas, N. C. (2017). Photosensitizing Properties of 6H -Dibenzo[b,   h ]xanthene Derivatives. ChemistrySelect, 2(35), 11732-11738. doi:10.1002/slct.201702649

Mitchell, L. J., Lewis, W., & Moody, C. J. (2013). Solar photochemistry: optimisation of the photo Friedel–Crafts acylation of naphthoquinones. Green Chemistry, 15(10), 2830. doi:10.1039/c3gc41477a

Ando, Y., & Suzuki, K. (2018). Photoredox Reactions of Quinones. Chemistry - A European Journal, 24(60), 15955-15964. doi:10.1002/chem.201801064

Suzuki, K., Ando, Y., & Matsumoto, T. (2017). Intramolecular Photoredox Reaction of Naphthoquinone Derivatives. Synlett, 28(09), 1040-1045. doi:10.1055/s-0036-1589001

Ando, Y., Hanaki, A., Sasaki, R., Ohmori, K., & Suzuki, K. (2017). Stereospecificity in Intramolecular Photoredox Reactions of Naphthoquinones: Enantioselective Total Synthesis of (−)-Spiroxin C. Angewandte Chemie International Edition, 56(38), 11460-11465. doi:10.1002/anie.201705562

Zhou, Q., Wei, Y., Liu, X., Chen, L., Zhou, X., & Liu, S. (2017). Photochemical Reaction Between 1,2-Naphthoquinone and Adenine in Binary Water-Acetonitrile Solutions. Photochemistry and Photobiology, 94(1), 61-68. doi:10.1111/php.12808

Szymczak, A. M., Podsiadły, R., Podemska, K., & Sokołowska, J. (2013). Dyes based on a 1,4-naphthoquinone skeleton as new type II photoinitiators for radical polymerisation. Coloration Technology, 129(4), 284-288. doi:10.1111/cote.12030

Görner, H. (2011). Photoreduction of nitro-1,4-naphthoquinones in solution. Journal of Photochemistry and Photobiology A: Chemistry, 224(1), 135-140. doi:10.1016/j.jphotochem.2011.09.016

Bose, A., Dey, D., & Basu, S. (2007). Structure-dependent switchover of reaction modes: A laser flash photolysis and magnetic field effect study. Journal of Photochemistry and Photobiology A: Chemistry, 186(2-3), 130-134. doi:10.1016/j.jphotochem.2006.07.021

Jornet, D., Bosca, F., Andreu, J. M., Domingo, L. R., Tormos, R., & Miranda, M. A. (2016). Analysis of mebendazole binding to its target biomolecule by laser flash photolysis. Journal of Photochemistry and Photobiology B: Biology, 155, 1-6. doi:10.1016/j.jphotobiol.2015.12.003

Netto-Ferreira, J. C., Lhiaubet-Vallet, V., Bernardes, B. O., Ferreira, A. B. B., & Miranda, M. Á. (2008). Characterization, reactivity and photosensitizing properties of the triplet excited state of α-lapachone. Physical Chemistry Chemical Physics, 10(44), 6645. doi:10.1039/b810413a

Freire, C. P. V., Ferreira, S. B., de Oliveira, N. S. M., Matsuura, A. B. J., Gama, I. L., da Silva, F. de C., … Ferreira, V. F. (2010). Synthesis and biological evaluation of substituted α- and β-2,3-dihydrofuran naphthoquinones as potent anticandidal agents. MedChemComm, 1(3), 229. doi:10.1039/c0md00074d

Da Silva Júnior, E. N., de Souza, M. C. B. V., Fernandes, M. C., Menna-Barreto, R. F. S., Pinto, M. do C. F. R., de Assis Lopes, F., … de Castro, S. L. (2008). Synthesis and anti-Trypanosoma cruzi activity of derivatives from nor-lapachones and lapachones. Bioorganic & Medicinal Chemistry, 16(9), 5030-5038. doi:10.1016/j.bmc.2008.03.032

Ferreira, F. da R., Ferreira, S. B., Araújo, A. J., Marinho Filho, J. D. B., Pessoa, C., Moraes, M. O., … Goulart, M. O. F. (2013). Arylated α- and β-dihydrofuran naphthoquinones: Electrochemical parameters, evaluation of antitumor activity and their correlation. Electrochimica Acta, 110, 634-640. doi:10.1016/j.electacta.2013.04.148

De Lucas, N. C., Corrêa, R. J., Garden, S. J., Santos, G., Rodrigues, R., Carvalho, C. E. M., … Miranda, M. A. (2012). Singlet oxygen production by pyrano and furano 1,4-naphthoquinones in non-aqueous medium. Photochemical & Photobiological Sciences, 11(7), 1201. doi:10.1039/c2pp05412d

Jackson, E. L. (1952). O-p-Toluenesulfonyl-L-tyrosine, Its N-Acetyl and N-Benzoyl Derivatives. Journal of the American Chemical Society, 74(3), 837-838. doi:10.1021/ja01123a513

Huang, H. T., & Niemann, C. (1951). The Kinetics of the α-Chymotrypsin Catalyzed Hydrolysis of Acetyl- and Nicotinyl-L-tryptophanamide in Aqueous Solutions at 25° and pH 7.91. Journal of the American Chemical Society, 73(4), 1541-1548. doi:10.1021/ja01148a040

Silva, F. de C. da, Ferreira, S. B., Kaiser, C. R., Pinto, A. C., & Ferreira, V. F. (2009). Synthesis of α- and β-lapachone derivatives from hetero diels-alder trapping of alkyl and aryl o-quinone methides. Journal of the Brazilian Chemical Society, 20(8), 1478-1482. doi:10.1590/s0103-50532009000800014

Netto-Ferreira, J. C., Bernardes, B., Ferreira, A. B. B., & Miranda, M. Á. (2008). Laser flash photolysis study of the triplet reactivity of β-lapachones. Photochemical & Photobiological Sciences, 7(4), 467. doi:10.1039/b716104b

Scaiano, J. C. (1982). Laser flash photolysis studies of the reactions of some 1,4-biradicals. Accounts of Chemical Research, 15(8), 252-258. doi:10.1021/ar00080a004

De Lucas, N. C., Silva, M. T., Gege, C., & Netto-Ferreira, J. C. (1999). Steady state and laser flash photolysis of acenaphthenequinone in the presence of olefins. Journal of the Chemical Society, Perkin Transactions 2, (12), 2795-2801. doi:10.1039/a904156g

De Lucas, N. C., Ruis, C. P., Teixeira, R. I., Marçal, L. L., Garden, S. J., Corrêa, R. J., … Ferreira, V. F. (2014). Photosensitizing properties of triplet furano and pyrano-1,2-naphthoquinones. Journal of Photochemistry and Photobiology A: Chemistry, 276, 16-30. doi:10.1016/j.jphotochem.2013.11.010

Monti, S., & Manet, I. (2014). Supramolecular photochemistry of drugs in biomolecular environments. Chem. Soc. Rev., 43(12), 4051-4067. doi:10.1039/c3cs60402k

Bacellar, I., Tsubone, T., Pavani, C., & Baptista, M. (2015). Photodynamic Efficiency: From Molecular Photochemistry to Cell Death. International Journal of Molecular Sciences, 16(9), 20523-20559. doi:10.3390/ijms160920523

Davies, M. J. (2003). Singlet oxygen-mediated damage to proteins and its consequences. Biochemical and Biophysical Research Communications, 305(3), 761-770. doi:10.1016/s0006-291x(03)00817-9

Tsentalovich, Y. P., Snytnikova, O. A., & Sagdeev, R. Z. (2004). Properties of excited states of aqueous tryptophan. Journal of Photochemistry and Photobiology A: Chemistry, 162(2-3), 371-379. doi:10.1016/s1010-6030(03)00376-9

Netto-Ferreira, J. C., Lhiaubet-Vallet, V., Silva, A. R. da, Silva, A. M. da, Ferreira, A. B. B., & Miranda, M. A. (2010). The photochemical reactivity of triplet β-lapachone-3-sulfonic acid towards biological substrates. Journal of the Brazilian Chemical Society, 21(6), 966-972. doi:10.1590/s0103-50532010000600004

Merenyi, G., Lind, J., & Shen, X. (1988). Electron transfer from indoles, phenol, and sulfite (SO32-) to chlorine dioxide (ClO2.). The Journal of Physical Chemistry, 92(1), 134-137. doi:10.1021/j100312a029

Das, P. K., Encinas, M. V., & Scaiano, J. C. (1981). Laser flash photolysis study of the reactions of carbonyl triplets with phenols and photochemistry of p-hydroxypropiophenone. Journal of the American Chemical Society, 103(14), 4154-4162. doi:10.1021/ja00404a029

Das, P. K., & Bhattacharyya, S. N. (1981). Laser flash photolysis study of electron transfer reactions of phenolate ions with aromatic carbonyl triplets. The Journal of Physical Chemistry, 85(10), 1391-1395. doi:10.1021/j150610a024

Das, P. K., Encinas, M. V., Steenken, S., & Scaiano, J. C. (1981). Reaction of tert-butoxy radicals with phenols. Comparison with the reactions of carbonyl triplets. Journal of the American Chemical Society, 103(14), 4162-4166. doi:10.1021/ja00404a030

De Lucas, N. C., Correa, R. J., Albuquerque, A. C. C., Firme, C. L., Garden, S. J., Bertoti, A. R., & Netto-Ferreira, J. C. (2007). Laser Flash Photolysis of 1,2-Diketopyracene and a Theoretical Study of the Phenolic Hydrogen Abstraction by the Triplet State of Cyclic α-Diketones. The Journal of Physical Chemistry A, 111(6), 1117-1122. doi:10.1021/jp065675o

De Lucas, N. C., Elias, M. M., Firme, C. L., Corrêa, R. J., Garden, S. J., Netto-Ferreira, J. C., & Nicodem, D. E. (2009). A combined laser flash photolysis, density functional theory and atoms in molecules study of the photochemical hydrogen abstraction by pyrene-4,5-dione. Journal of Photochemistry and Photobiology A: Chemistry, 201(1), 1-7. doi:10.1016/j.jphotochem.2008.08.014

Pérez-Prieto, J., Stiriba, S.-E., Boscá, F., Lahoz, A., Domingo, L. R., Mourabit, F., … Miranda, M. A. (2004). Geometrical Effects on the Intramolecular Quenching of π,π* Aromatic Ketones by Phenols and Indoles. The Journal of Organic Chemistry, 69(25), 8618-8625. doi:10.1021/jo048973v

Morozova, O. B., Panov, M. S., Fishman, N. N., & Yurkovskaya, A. V. (2018). Electron transfer vs. proton-coupled electron transfer as the mechanism of reaction between amino acids and triplet-excited benzophenones revealed by time-resolved CIDNP. Physical Chemistry Chemical Physics, 20(32), 21127-21135. doi:10.1039/c8cp03591a

Saouma, C. T., & Mayer, J. M. (2014). Do spin state and spin density affect hydrogen atom transfer reactivity? Chem. Sci., 5(1), 21-31. doi:10.1039/c3sc52664j

Hsieh, C.-C., Jiang, C.-M., & Chou, P.-T. (2010). Recent Experimental Advances on Excited-State Intramolecular Proton Coupled Electron Transfer Reaction. Accounts of Chemical Research, 43(10), 1364-1374. doi:10.1021/ar1000499

Herner, A., & Lin, Q. (2015). Photo-Triggered Click Chemistry for Biological Applications. Topics in Current Chemistry, 374(1). doi:10.1007/s41061-015-0002-2

Gagliardi, C. J., Westlake, B. C., Kent, C. A., Paul, J. J., Papanikolas, J. M., & Meyer, T. J. (2010). Integrating proton coupled electron transfer (PCET) and excited states. Coordination Chemistry Reviews, 254(21-22), 2459-2471. doi:10.1016/j.ccr.2010.03.001

Darcy, J. W., Koronkiewicz, B., Parada, G. A., & Mayer, J. M. (2018). A Continuum of Proton-Coupled Electron Transfer Reactivity. Accounts of Chemical Research, 51(10), 2391-2399. doi:10.1021/acs.accounts.8b00319

Pizano, A. A., Lutterman, D. A., Holder, P. G., Teets, T. S., Stubbe, J., & Nocera, D. G. (2011). Photo-ribonucleotide reductase  2 by selective cysteine labeling with a radical phototrigger. Proceedings of the National Academy of Sciences, 109(1), 39-43. doi:10.1073/pnas.1115778108

Gentry, E. C., & Knowles, R. R. (2016). Synthetic Applications of Proton-Coupled Electron Transfer. Accounts of Chemical Research, 49(8), 1546-1556. doi:10.1021/acs.accounts.6b00272

Hammes-Schiffer, S. (2015). Proton-Coupled Electron Transfer: Moving Together and Charging Forward. Journal of the American Chemical Society, 137(28), 8860-8871. doi:10.1021/jacs.5b04087

Savéant, J.-M. (2014). Concerted Proton-Electron Transfers: Fundamentals and Recent Developments. Annual Review of Analytical Chemistry, 7(1), 537-560. doi:10.1146/annurev-anchem-071213-020315

Mayer, J. M., Rhile, I. J., Larsen, F. B., Mader, E. A., Markle, T. F., & DiPasquale, A. G. (2006). Models for Proton-coupled Electron Transfer in Photosystem II. Photosynthesis Research, 87(1), 3-20. doi:10.1007/s11120-005-8164-3

Concepcion, J. J., Brennaman, M. K., Deyton, J. R., Lebedeva, N. V., Forbes, M. D. E., Papanikolas, J. M., & Meyer, T. J. (2007). Excited-State Quenching by Proton-Coupled Electron Transfer. Journal of the American Chemical Society, 129(22), 6968-6969. doi:10.1021/ja069049g

Irebo, T., Johansson, O., & Hammarström, L. (2008). The Rate Ladder of Proton-Coupled Tyrosine Oxidation in Water: A Systematic Dependence on Hydrogen Bonds and Protonation State. Journal of the American Chemical Society, 130(29), 9194-9195. doi:10.1021/ja802076v

Ravensbergen, J., Brown, C. L., Moore, G. F., Frese, R. N., van Grondelle, R., Gust, D., … Kennis, J. T. M. (2015). Kinetic isotope effect of proton-coupled electron transfer in a hydrogen bonded phenol–pyrrolidino[60]fullerene. Photochemical & Photobiological Sciences, 14(12), 2147-2150. doi:10.1039/c5pp00259a

Markle, T. F., Darcy, J. W., & Mayer, J. M. (2018). A new strategy to efficiently cleave and form C–H bonds using proton-coupled electron transfer. Science Advances, 4(7). doi:10.1126/sciadv.aat5776

Manbeck, G. F., Fujita, E., & Concepcion, J. J. (2016). Proton-Coupled Electron Transfer in a Strongly Coupled Photosystem II-Inspired Chromophore–Imidazole–Phenol Complex: Stepwise Oxidation and Concerted Reduction. Journal of the American Chemical Society, 138(36), 11536-11549. doi:10.1021/jacs.6b03506

Amada, I., Yamaji, M., Sase, M., & Shizuka, H. (1995). Laser flash photolysis studies on hydrogen atom abstraction from phenol by triplet naphthoquinones in acetonitrile. Journal of the Chemical Society, Faraday Transactions, 91(17), 2751. doi:10.1039/ft9959102751

Craggs, J., Kirk, S. H., & Ahmad, S. I. (1994). Synergistic action of near-UV and phenylalanine, tyrosine or tryptophan on the inactivation of phage T7: Role of superoxide radicals and hydrogen peroxide. Journal of Photochemistry and Photobiology B: Biology, 24(2), 123-128. doi:10.1016/1011-1344(94)07014-8

Ouyang, D., & Hirakawa, K. (2017). Photosensitized enzyme deactivation and protein oxidation by axial-substituted phosphorus(V) tetraphenylporphyrins. Journal of Photochemistry and Photobiology B: Biology, 175, 125-131. doi:10.1016/j.jphotobiol.2017.08.036

Thomas, A. H., Zurbano, B. N., Lorente, C., Santos, J., Roman, E. A., & Laura Dántola, M. (2014). Chemical changes in bovine serum albumin photoinduced by pterin. Journal of Photochemistry and Photobiology B: Biology, 141, 262-268. doi:10.1016/j.jphotobiol.2014.10.007

Kerwin, B. A., & Remmele, R. L. (2007). Protect from Light: Photodegradation and Protein Biologics. Journal of Pharmaceutical Sciences, 96(6), 1468-1479. doi:10.1002/jps.20815

Pérez-Prieto, J., Boscá, F., Galian, R. E., Lahoz, A., Domingo, L. R., & Miranda, M. A. (2003). Photoreaction between 2-Benzoylthiophene and Phenol or Indole. The Journal of Organic Chemistry, 68(13), 5104-5113. doi:10.1021/jo034225e

De Lucas, N. C., Fraga, H. S., Cardoso, C. P., Corrêa, R. J., Garden, S. J., & Netto-Ferreira, J. C. (2010). A laser flash photolysis and theoretical study of hydrogen abstraction from phenols by triplet α-naphthoflavone. Physical Chemistry Chemical Physics, 12(36), 10746. doi:10.1039/c002738c

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem