- -

Tunable subwavelength ultrasound focusing in mesoscale spherical lenses using liquid mixtures

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Tunable subwavelength ultrasound focusing in mesoscale spherical lenses using liquid mixtures

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Pérez-López, Sergio es_ES
dc.contributor.author Fuster, José Miguel es_ES
dc.contributor.author Minin, Igor V. es_ES
dc.contributor.author Minin, Oleg V. es_ES
dc.contributor.author Candelas Valiente, Pilar es_ES
dc.date.accessioned 2021-02-04T04:32:21Z
dc.date.available 2021-02-04T04:32:21Z
dc.date.issued 2019-09-16 es_ES
dc.identifier.issn 2045-2322 es_ES
dc.identifier.uri http://hdl.handle.net/10251/160688
dc.description.abstract [EN] In this work, we present a configurable spherical lens for underwater focusing applications, which consists on a hollow ABS container filled with a liquid mixture. Two miscible liquids with different sound speeds are required to implement this novel configurable lens. We show that by adjusting the mixing ratio between the volumes of both liquids, the sound speed of the liquid mixture can be accurately selected. This results in a modification of the acoustic jet properties and a continuous tuning on the lens focal length. This procedure can be fully automatized providing a dynamic control mechanism that can shift the lens focal length to any desired value inside a continuous range in both directions. Depending on the acoustic properties of the selected liquids, subwavelength resolution or even beyond the diffraction limit resolution can be achieved. We provide experimental measurements for ethanol-water mixtures achieving subwavelength resolution for a certain focal length ranging between 34.6 and 42.8 mm. es_ES
dc.description.sponsorship This work has been supported by Spanish MINECO TEC2015-70939-R and MICINN RTI2018-100792-B-I00 projects. S.P.-L. acknowledges financial support from Universitat Politecnica de Valencia grant program PAID01-18. I.V.M. and O.V.M. acknowledge support from the Tomsk Polytechnic University Enhancement Program. es_ES
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Scientific Reports es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Tunable subwavelength ultrasound focusing in mesoscale spherical lenses using liquid mixtures es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/s41598-019-50019-0 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-01-18/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2015-70939-R/ES/ESTRUCTURAS SUBWAVELENGTH PARA LA FOCALIZACION DE ULTRASONIDOS DE ALTA INTENSIDAD/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-100792-B-I00/ES/FOCALIZACION Y CONFORMACION DE HACES DE ULTRASONIDOS MEDIANTE LENTES PLANAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Pérez-López, S.; Fuster, JM.; Minin, IV.; Minin, OV.; Candelas Valiente, P. (2019). Tunable subwavelength ultrasound focusing in mesoscale spherical lenses using liquid mixtures. Scientific Reports. 9:1-7. https://doi.org/10.1038/s41598-019-50019-0 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1038/s41598-019-50019-0 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 7 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.identifier.pmid 31527645 es_ES
dc.identifier.pmcid PMC6746746 es_ES
dc.relation.pasarela S\393266 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Lu, Y. F., Zhang, L., Song, W. D., Zheng, Y. W. & Luk’yanchuk, B. S. Laser writing of a subwavelength structure on silicon (100) surfaces with particle-enhanced optical irradiation. J. Exp. Theor. Phys. Lett. 72, 457–459, https://doi.org/10.1134/1.1339899 (2000). es_ES
dc.description.references Chen, Z., Taflove, A. & Backman, V. Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique. Opt. Express 12, 1214, https://doi.org/10.1364/OPEX.12.001214 (2004). es_ES
dc.description.references Heifetz, A., Kong, S.-C., Sahakian, A. V., Taflove, A. & Backman, V. Photonic Nanojets. J. Comput. Theor. Nanosci. 6, 1979–1992, https://doi.org/10.1166/jctn.2009.1254 (2009). es_ES
dc.description.references Thomas, D. C., Gee, K. L. & Turley, R. S. A balloon lens: Acoustic scattering from a penetrable sphere. Am. J. Phys. 77, 197–203, https://doi.org/10.1119/1.3041420 (2009). es_ES
dc.description.references Parrales Borrero, M. A., Pérez-Saborid, M. & Fernández García, J. M. Acoustic scattering from a spherical lens irradiated by a finite transducer: Focusing effect and refraction. Am. J. Phys. 79, 401–408, https://doi.org/10.1119/1.3546092 (2011). es_ES
dc.description.references Minin, O. V. & Minin, I. V. Acoustojet: acoustic analogue of photonic jet phenomenon based on penetrable 3D particle. Opt. Quantum Electron. 49, 54, https://doi.org/10.1007/s11082-017-0893-y (2017). es_ES
dc.description.references Lopes, J. H. et al. Focusing Acoustic Beams with a Ball-Shaped Lens beyond the Diffraction Limit. Phys. Rev. Appl. 8, 024013, https://doi.org/10.1103/PhysRevApplied.8.024013 (2017). es_ES
dc.description.references Veira Canle, D. et al. Practical realization of a sub-l/2 acoustic jet. Sci. Reports 9, 5189, https://doi.org/10.1038/s41598-019-41335-6 (2019). es_ES
dc.description.references Chen, J., Xiao, J., Lisevych, D., Shakouri, A. & Fan, Z. Deep-subwavelength control of acoustic waves in an ultra-compact metasurface lens. Nat. Commun. 9, 4920, https://doi.org/10.1038/s41467-018-07315-6 (2018). es_ES
dc.description.references Assouar, B. et al. Acoustic metasurfaces. Nat. Rev. Mater. 3, 460–472, https://doi.org/10.1038/s41578-018-0061-4 (2018). es_ES
dc.description.references Al Jahdali, R. & Wu, Y. High transmission acoustic focusing by impedance-matched acoustic meta-surfaces. Appl. Phys. Lett. 108, 031902, https://doi.org/10.1063/1.4939932 (2016). es_ES
dc.description.references Jiménez-Gambín, S., Jiménez, N., Benlloch, J. M. & Camarena, F. Holograms to focus arbitrary ultrasonic fields through the skull. 1902.06716 (2019). es_ES
dc.description.references Hyun, J. et al. Realization of an ultrathin acoustic lens for subwavelength focusing in the megasonic range. Sci. Reports 8, 9131, https://doi.org/10.1038/s41598-018-27312-5 (2018). es_ES
dc.description.references Chen, J., Rao, J., Lisevych, D. & Fan, Z. Broadband ultrasonic focusing in water with an ultra-compact metasurface lens. Appl. Phys. Lett. 114, 104101, https://doi.org/10.1063/1.5090956 (2019). es_ES
dc.description.references Chen, J., Sun, Z. & Fan, Z. Groove-structured meta-surface for patterned sub-diffraction sound focusing. Appl. Phys. Lett. 114, 254102, https://doi.org/10.1063/1.5096258 (2019). es_ES
dc.description.references Oku, H., Hashimoto, K. & Ishikawa, M. Variable-focus lens with 1-kHz bandwidth. Opt. Express 12, 2138, https://doi.org/10.1364/OPEX.12.002138 (2004). es_ES
dc.description.references Honma, M., Nose, T., Yanase, S., Yamaguchi, R. & Sato, S. Liquid-crystal variable-focus lenses with a spatially-distributed tilt angles. Opt. Express 17, 10998, https://doi.org/10.1364/OE.17.010998 (2009). es_ES
dc.description.references Gorman, C. B., Biebuyck, H. A. & Whitesides, G. M. Control of the Shape of Liquid Lenses on a Modified Gold Surface Using an Applied Electrical Potential across a Self-Assembled Monolayer. Langmuir 11, 2242–2246, https://doi.org/10.1021/la00006a063 (1995). es_ES
dc.description.references Berge, B. & Peseux, J. Variable focal lens controlled by an external voltage: An application of electrowetting. The Eur. Phys. J. E 3, 159–163, https://doi.org/10.1007/s101890070029 (2000). es_ES
dc.description.references López, C. A. & Hirsa, A. H. Fast focusing using a pinned-contact oscillating liquid lens. Nat. Photonics 2, 610–613, https://doi.org/10.1038/nphoton.2008.198 (2008). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem