- -

Tunable subwavelength ultrasound focusing in mesoscale spherical lenses using liquid mixtures

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Tunable subwavelength ultrasound focusing in mesoscale spherical lenses using liquid mixtures

Mostrar el registro completo del ítem

Pérez-López, S.; Fuster, JM.; Minin, IV.; Minin, OV.; Candelas Valiente, P. (2019). Tunable subwavelength ultrasound focusing in mesoscale spherical lenses using liquid mixtures. Scientific Reports. 9:1-7. https://doi.org/10.1038/s41598-019-50019-0

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/160688

Ficheros en el ítem

Metadatos del ítem

Título: Tunable subwavelength ultrasound focusing in mesoscale spherical lenses using liquid mixtures
Autor: Pérez-López, Sergio Fuster, José Miguel Minin, Igor V. Minin, Oleg V. Candelas Valiente, Pilar
Entidad UPV: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Fecha difusión:
Resumen:
[EN] In this work, we present a configurable spherical lens for underwater focusing applications, which consists on a hollow ABS container filled with a liquid mixture. Two miscible liquids with different sound speeds are ...[+]
Derechos de uso: Reconocimiento (by)
Fuente:
Scientific Reports. (issn: 2045-2322 )
DOI: 10.1038/s41598-019-50019-0
Editorial:
Nature Publishing Group
Versión del editor: https://doi.org/10.1038/s41598-019-50019-0
Código del Proyecto:
info:eu-repo/grantAgreement/UPV//PAID-01-18/
info:eu-repo/grantAgreement/MINECO//TEC2015-70939-R/ES/ESTRUCTURAS SUBWAVELENGTH PARA LA FOCALIZACION DE ULTRASONIDOS DE ALTA INTENSIDAD/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-100792-B-I00/ES/FOCALIZACION Y CONFORMACION DE HACES DE ULTRASONIDOS MEDIANTE LENTES PLANAS/
Agradecimientos:
This work has been supported by Spanish MINECO TEC2015-70939-R and MICINN RTI2018-100792-B-I00 projects. S.P.-L. acknowledges financial support from Universitat Politecnica de Valencia grant program PAID01-18. I.V.M. and ...[+]
Tipo: Artículo

References

Lu, Y. F., Zhang, L., Song, W. D., Zheng, Y. W. & Luk’yanchuk, B. S. Laser writing of a subwavelength structure on silicon (100) surfaces with particle-enhanced optical irradiation. J. Exp. Theor. Phys. Lett. 72, 457–459, https://doi.org/10.1134/1.1339899 (2000).

Chen, Z., Taflove, A. & Backman, V. Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique. Opt. Express 12, 1214, https://doi.org/10.1364/OPEX.12.001214 (2004).

Heifetz, A., Kong, S.-C., Sahakian, A. V., Taflove, A. & Backman, V. Photonic Nanojets. J. Comput. Theor. Nanosci. 6, 1979–1992, https://doi.org/10.1166/jctn.2009.1254 (2009). [+]
Lu, Y. F., Zhang, L., Song, W. D., Zheng, Y. W. & Luk’yanchuk, B. S. Laser writing of a subwavelength structure on silicon (100) surfaces with particle-enhanced optical irradiation. J. Exp. Theor. Phys. Lett. 72, 457–459, https://doi.org/10.1134/1.1339899 (2000).

Chen, Z., Taflove, A. & Backman, V. Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique. Opt. Express 12, 1214, https://doi.org/10.1364/OPEX.12.001214 (2004).

Heifetz, A., Kong, S.-C., Sahakian, A. V., Taflove, A. & Backman, V. Photonic Nanojets. J. Comput. Theor. Nanosci. 6, 1979–1992, https://doi.org/10.1166/jctn.2009.1254 (2009).

Thomas, D. C., Gee, K. L. & Turley, R. S. A balloon lens: Acoustic scattering from a penetrable sphere. Am. J. Phys. 77, 197–203, https://doi.org/10.1119/1.3041420 (2009).

Parrales Borrero, M. A., Pérez-Saborid, M. & Fernández García, J. M. Acoustic scattering from a spherical lens irradiated by a finite transducer: Focusing effect and refraction. Am. J. Phys. 79, 401–408, https://doi.org/10.1119/1.3546092 (2011).

Minin, O. V. & Minin, I. V. Acoustojet: acoustic analogue of photonic jet phenomenon based on penetrable 3D particle. Opt. Quantum Electron. 49, 54, https://doi.org/10.1007/s11082-017-0893-y (2017).

Lopes, J. H. et al. Focusing Acoustic Beams with a Ball-Shaped Lens beyond the Diffraction Limit. Phys. Rev. Appl. 8, 024013, https://doi.org/10.1103/PhysRevApplied.8.024013 (2017).

Veira Canle, D. et al. Practical realization of a sub-l/2 acoustic jet. Sci. Reports 9, 5189, https://doi.org/10.1038/s41598-019-41335-6 (2019).

Chen, J., Xiao, J., Lisevych, D., Shakouri, A. & Fan, Z. Deep-subwavelength control of acoustic waves in an ultra-compact metasurface lens. Nat. Commun. 9, 4920, https://doi.org/10.1038/s41467-018-07315-6 (2018).

Assouar, B. et al. Acoustic metasurfaces. Nat. Rev. Mater. 3, 460–472, https://doi.org/10.1038/s41578-018-0061-4 (2018).

Al Jahdali, R. & Wu, Y. High transmission acoustic focusing by impedance-matched acoustic meta-surfaces. Appl. Phys. Lett. 108, 031902, https://doi.org/10.1063/1.4939932 (2016).

Jiménez-Gambín, S., Jiménez, N., Benlloch, J. M. & Camarena, F. Holograms to focus arbitrary ultrasonic fields through the skull. 1902.06716 (2019).

Hyun, J. et al. Realization of an ultrathin acoustic lens for subwavelength focusing in the megasonic range. Sci. Reports 8, 9131, https://doi.org/10.1038/s41598-018-27312-5 (2018).

Chen, J., Rao, J., Lisevych, D. & Fan, Z. Broadband ultrasonic focusing in water with an ultra-compact metasurface lens. Appl. Phys. Lett. 114, 104101, https://doi.org/10.1063/1.5090956 (2019).

Chen, J., Sun, Z. & Fan, Z. Groove-structured meta-surface for patterned sub-diffraction sound focusing. Appl. Phys. Lett. 114, 254102, https://doi.org/10.1063/1.5096258 (2019).

Oku, H., Hashimoto, K. & Ishikawa, M. Variable-focus lens with 1-kHz bandwidth. Opt. Express 12, 2138, https://doi.org/10.1364/OPEX.12.002138 (2004).

Honma, M., Nose, T., Yanase, S., Yamaguchi, R. & Sato, S. Liquid-crystal variable-focus lenses with a spatially-distributed tilt angles. Opt. Express 17, 10998, https://doi.org/10.1364/OE.17.010998 (2009).

Gorman, C. B., Biebuyck, H. A. & Whitesides, G. M. Control of the Shape of Liquid Lenses on a Modified Gold Surface Using an Applied Electrical Potential across a Self-Assembled Monolayer. Langmuir 11, 2242–2246, https://doi.org/10.1021/la00006a063 (1995).

Berge, B. & Peseux, J. Variable focal lens controlled by an external voltage: An application of electrowetting. The Eur. Phys. J. E 3, 159–163, https://doi.org/10.1007/s101890070029 (2000).

López, C. A. & Hirsa, A. H. Fast focusing using a pinned-contact oscillating liquid lens. Nat. Photonics 2, 610–613, https://doi.org/10.1038/nphoton.2008.198 (2008).

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem