- -

Robust catalytically-activated LSM-BCZY-based composite steam electrodes for proton ceramic electrolysis cells

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Robust catalytically-activated LSM-BCZY-based composite steam electrodes for proton ceramic electrolysis cells

Mostrar el registro completo del ítem

Bausá, N.; Serra Alfaro, JM. (2019). Robust catalytically-activated LSM-BCZY-based composite steam electrodes for proton ceramic electrolysis cells. RSC Advances. 9(36):20677-20686. https://doi.org/10.1039/c9ra04044g

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/160693

Ficheros en el ítem

Metadatos del ítem

Título: Robust catalytically-activated LSM-BCZY-based composite steam electrodes for proton ceramic electrolysis cells
Autor: Bausá, Nuria Serra Alfaro, José Manuel
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Fecha difusión:
Resumen:
[EN] Backbone electrodes based on an electronic conductor and a protonic conductor show advantages for proton ceramic electrolyzer cells (PCECs). This work, aims to shed further light on the nature of the rate determining ...[+]
Derechos de uso: Reconocimiento - No comercial (by-nc)
Fuente:
RSC Advances. (eissn: 2046-2069 )
DOI: 10.1039/c9ra04044g
Editorial:
The Royal Society of Chemistry
Versión del editor: https://doi.org/10.1039/c9ra04044g
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//ENE2014-57651-R/ES/ALMACENAMIENTO DE ENERGIA VIA REDUCCION DE CO2 A COMBUSTIBLES Y PRODUCTOS QUIMICOS/
info:eu-repo/grantAgreement/EC/FP7/621244/EU/High temperature electrolyser with novel proton ceramic tubular modules of superior efficiency, robustness, and lifetime economy/
info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F006/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-102161-B-I00/ES/CONVERSION DIRECTA DE CO2 EN PORTADORES DE ENERGIA QUIMICA UTILIZANDO REACTORES ELECTROCATALITICOS DE MEMBRANA/
Agradecimientos:
Financial support by the Spanish Government (Grants SEV-2016-0683, RTI2018-102161 and ENE2014-57651), Generalitat Valenciana (PROMETEO/2018/006) and by the EU through FP7 Electra Project (Grant Agreement 621244) is gratefully ...[+]
Tipo: Artículo

References

Iwahara, H. (1995). Technological challenges in the application of proton conducting ceramics. Solid State Ionics, 77, 289-298. doi:10.1016/0167-2738(95)00051-7

Iwahara, H. (2004). Prospect of hydrogen technology using proton-conducting ceramics. Solid State Ionics, 168(3-4), 299-310. doi:10.1016/j.ssi.2003.03.001

Escolástico, S., Solís, C., & Serra, J. M. (2011). Hydrogen separation and stability study of ceramic membranes based on the system Nd5LnWO12. International Journal of Hydrogen Energy, 36(18), 11946-11954. doi:10.1016/j.ijhydene.2011.06.026 [+]
Iwahara, H. (1995). Technological challenges in the application of proton conducting ceramics. Solid State Ionics, 77, 289-298. doi:10.1016/0167-2738(95)00051-7

Iwahara, H. (2004). Prospect of hydrogen technology using proton-conducting ceramics. Solid State Ionics, 168(3-4), 299-310. doi:10.1016/j.ssi.2003.03.001

Escolástico, S., Solís, C., & Serra, J. M. (2011). Hydrogen separation and stability study of ceramic membranes based on the system Nd5LnWO12. International Journal of Hydrogen Energy, 36(18), 11946-11954. doi:10.1016/j.ijhydene.2011.06.026

Solís, C., Vert, V. B., Fabuel, M., & Serra, J. M. (2011). Electrochemical properties of composite cathodes for La0.995Ca0.005NbO4−δ-based proton conducting fuel cells. Journal of Power Sources, 196(22), 9220-9227. doi:10.1016/j.jpowsour.2011.07.041

Solís, C., Navarrete, L., Roitsch, S., & Serra, J. M. (2012). Electrochemical properties of composite fuel cell cathodes for La5.5WO12−δ proton conducting electrolytes. Journal of Materials Chemistry, 22(31), 16051. doi:10.1039/c2jm32061d

Escolástico, S., Solís, C., Kjølseth, C., & Serra, J. M. (2014). Outstanding hydrogen permeation through CO2-stable dual-phase ceramic membranes. Energy Environ. Sci., 7(11), 3736-3746. doi:10.1039/c4ee02066a

Malerød-Fjeld, H., Clark, D., Yuste-Tirados, I., Zanón, R., Catalán-Martinez, D., Beeaff, D., … Kjølseth, C. (2017). Thermo-electrochemical production of compressed hydrogen from methane with near-zero energy loss. Nature Energy, 2(12), 923-931. doi:10.1038/s41560-017-0029-4

Morejudo, S. H., Zanón, R., Escolástico, S., Yuste-Tirados, I., Malerød-Fjeld, H., Vestre, P. K., … Kjølseth, C. (2016). Direct conversion of methane to aromatics in a catalytic co-ionic membrane reactor. Science, 353(6299), 563-566. doi:10.1126/science.aag0274

Hossain, S., Abdalla, A. M., Jamain, S. N. B., Zaini, J. H., & Azad, A. K. (2017). A review on proton conducting electrolytes for clean energy and intermediate temperature-solid oxide fuel cells. Renewable and Sustainable Energy Reviews, 79, 750-764. doi:10.1016/j.rser.2017.05.147

Leonard, K., Okuyama, Y., Takamura, Y., Lee, Y.-S., Miyazaki, K., Ivanova, M. E., … Matsumoto, H. (2018). Efficient intermediate-temperature steam electrolysis with Y : SrZrO3–SrCeO3 and Y : BaZrO3–BaCeO3 proton conducting perovskites. Journal of Materials Chemistry A, 6(39), 19113-19124. doi:10.1039/c8ta04019b

Zohourian, R., Merkle, R., Raimondi, G., & Maier, J. (2018). Mixed-Conducting Perovskites as Cathode Materials for Protonic Ceramic Fuel Cells: Understanding the Trends in Proton Uptake. Advanced Functional Materials, 28(35), 1801241. doi:10.1002/adfm.201801241

Serra, J. M. (2019). Electrifying chemistry with protonic cells. Nature Energy, 4(3), 178-179. doi:10.1038/s41560-019-0353-y

Duan, C., Tong, J., Shang, M., Nikodemski, S., Sanders, M., Ricote, S., … O’Hayre, R. (2015). Readily processed protonic ceramic fuel cells with high performance at low temperatures. Science, 349(6254), 1321-1326. doi:10.1126/science.aab3987

Choi, S., Kucharczyk, C. J., Liang, Y., Zhang, X., Takeuchi, I., Ji, H.-I., & Haile, S. M. (2018). Exceptional power density and stability at intermediate temperatures in protonic ceramic fuel cells. Nature Energy, 3(3), 202-210. doi:10.1038/s41560-017-0085-9

Fabbri, E., Licoccia, S., Traversa, E., & Wachsman, E. D. (2009). Composite Cathodes for Proton Conducting Electrolytes. Fuel Cells, 9(2), 128-138. doi:10.1002/fuce.200800126

Vert, V. B., Solís, C., & Serra, J. M. (2010). Electrochemical Properties of PSFC-BCYb Composites as Cathodes for Proton Conducting Solid Oxide Fuel Cells. Fuel Cells, 11(1), 81-90. doi:10.1002/fuce.201000090

Perry Murray, E. (2001). (La,Sr)MnO3–(Ce,Gd)O2−x composite cathodes for solid oxide fuel cells. Solid State Ionics, 143(3-4), 265-273. doi:10.1016/s0167-2738(01)00871-2

Strandbakke, R., Cherepanov, V. A., Zuev, A. Y., Tsvetkov, D. S., Argirusis, C., Sourkouni, G., … Norby, T. (2015). Gd- and Pr-based double perovskite cobaltites as oxygen electrodes for proton ceramic fuel cells and electrolyser cells. Solid State Ionics, 278, 120-132. doi:10.1016/j.ssi.2015.05.014

Gan, Y., Zhang, J., Li, Y., Li, S., Xie, K., & Irvine, J. T. S. (2012). Composite Oxygen Electrode Based on LSCM for Steam Electrolysis in a Proton Conducting Solid Oxide Electrolyzer. Journal of The Electrochemical Society, 159(11), F763-F767. doi:10.1149/2.018212jes

Bausá, N., Solís, C., Strandbakke, R., & Serra, J. M. (2017). Development of composite steam electrodes for electrolyzers based on barium zirconate. Solid State Ionics, 306, 62-68. doi:10.1016/j.ssi.2017.03.020

Liu, Z., Liu, M., Yang, L., & Liu, M. (2013). LSM-infiltrated LSCF cathodes for solid oxide fuel cells. Journal of Energy Chemistry, 22(4), 555-559. doi:10.1016/s2095-4956(13)60072-8

Solís, C., Navarrete, L., Bozza, F., Bonanos, N., & Serra, J. M. (2015). Catalytic Surface Promotion of Composite Cathodes in Protonic Ceramic Fuel Cells. ChemElectroChem, 2(8), 1106-1110. doi:10.1002/celc.201500068

Ding, H., Sullivan, N. P., & Ricote, S. (2017). Double perovskite Ba2FeMoO6−δ as fuel electrode for protonic-ceramic membranes. Solid State Ionics, 306, 97-103. doi:10.1016/j.ssi.2017.04.007

Dippon, M., Babiniec, S. M., Ding, H., Ricote, S., & Sullivan, N. P. (2016). Exploring electronic conduction through BaCe Zr0.9−Y0.1O3−d proton-conducting ceramics. Solid State Ionics, 286, 117-121. doi:10.1016/j.ssi.2016.01.029

Jørgensen, M. J., & Mogensen, M. (2001). Impedance of Solid Oxide Fuel Cell LSM/YSZ Composite Cathodes. Journal of The Electrochemical Society, 148(5), A433. doi:10.1149/1.1360203

García-Fayos, J., Ruhl, R., Navarrete, L., Bouwmeester, H. J. M., & Serra, J. M. (2018). Enhancing oxygen permeation through Fe2NiO4–Ce0.8Tb0.2O2−δ composite membranes using porous layers activated with Pr6O11 nanoparticles. Journal of Materials Chemistry A, 6(3), 1201-1209. doi:10.1039/c7ta06485c

Navarrete, L., Solís, C., & Serra, J. M. (2015). Boosting the oxygen reduction reaction mechanisms in IT-SOFC cathodes by catalytic functionalization. Journal of Materials Chemistry A, 3(32), 16440-16444. doi:10.1039/c5ta05187h

Babiniec, S. M., Ricote, S., & Sullivan, N. P. (2014). Infiltrated Lanthanum Nickelate Cathodes for Use with BaCe0.2Zr0.7Y0.1O3 − δProton Conducting Electrolytes. Journal of The Electrochemical Society, 161(6), F717-F723. doi:10.1149/2.037406jes

Li, W., Guan, B., Ma, L., Hu, S., Zhang, N., & Liu, X. (2018). High performing triple-conductive Pr2NiO4+δ anode for proton-conducting steam solid oxide electrolysis cell. Journal of Materials Chemistry A, 6(37), 18057-18066. doi:10.1039/c8ta04018d

Strandbakke, R., Vøllestad, E., Robinson, S. A., Fontaine, M.-L., & Norby, T. (2017). Ba0.5Gd0.8La0.7Co2O6-δInfiltrated in Porous BaZr0.7Ce0.2Y0.1O3Backbones as Electrode Material for Proton Ceramic Electrolytes. Journal of The Electrochemical Society, 164(4), F196-F202. doi:10.1149/2.0141704jes

Babilo, P., & Haile, S. M. (2005). Enhanced Sintering of Yttrium-Doped Barium Zirconate by Addition of ZnO. Journal of the American Ceramic Society, 88(9), 2362-2368. doi:10.1111/j.1551-2916.2005.00449.x

Rebollo, E., Mortalò, C., Escolástico, S., Boldrini, S., Barison, S., Serra, J. M., & Fabrizio, M. (2015). Exceptional hydrogen permeation of all-ceramic composite robust membranes based on BaCe0.65Zr0.20Y0.15O3−δ and Y- or Gd-doped ceria. Energy & Environmental Science, 8(12), 3675-3686. doi:10.1039/c5ee01793a

Fabbri, E., Bi, L., Pergolesi, D., & Traversa, E. (2011). High-performance composite cathodes with tailored mixed conductivity for intermediate temperature solid oxide fuel cells using proton conducting electrolytes. Energy & Environmental Science, 4(12), 4984. doi:10.1039/c1ee02361f

Ricote, S., Bonanos, N., Wang, H. J., & Haugsrud, R. (2011). Conductivity, transport number measurements and hydration thermodynamics of BaCe0.2Zr0.7Y(0.1−ξ)NiξO(3−δ). Solid State Ionics, 185(1), 11-17. doi:10.1016/j.ssi.2010.12.012

He, F., Wu, T., Peng, R., & Xia, C. (2009). Cathode reaction models and performance analysis of Sm0.5Sr0.5CoO3−δ–BaCe0.8Sm0.2O3−δ composite cathode for solid oxide fuel cells with proton conducting electrolyte. Journal of Power Sources, 194(1), 263-268. doi:10.1016/j.jpowsour.2009.04.053

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem