- -

Robust catalytically-activated LSM-BCZY-based composite steam electrodes for proton ceramic electrolysis cells

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Robust catalytically-activated LSM-BCZY-based composite steam electrodes for proton ceramic electrolysis cells

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Bausá, Nuria es_ES
dc.contributor.author Serra Alfaro, José Manuel es_ES
dc.date.accessioned 2021-02-04T04:32:30Z
dc.date.available 2021-02-04T04:32:30Z
dc.date.issued 2019-07-04 es_ES
dc.identifier.uri http://hdl.handle.net/10251/160693
dc.description.abstract [EN] Backbone electrodes based on an electronic conductor and a protonic conductor show advantages for proton ceramic electrolyzer cells (PCECs). This work, aims to shed further light on the nature of the rate determining steps in the anode operation and improve the reaction rate in high steam pressure electrolysis mode by (i) adjusting their catalytic activity through electrode infiltration with catalytic electronic-conducting nanoparticles; and (ii) electrochemical activation of surface species by applying a net current through the electrode. A composite formed by La0.8Sr0.2MnO3-delta (LSM) and BaCe0.2Zr0.7Y0.1O3-delta (BCZY27) was deposited on proton-conducting BCZY27 electrolytes and studied in symmetrical cells to investigate the anode microstructure and electrochemical performance. Electrochemical impedance spectroscopy (EIS) measurements were performed in the 800-500 degrees C range under 3 bar of pressure of wet air (75% of steam). LSM/BCZY27 50/50 vol% showed the best performance with an electrode polarization resistance (R-p) of 6.04 omega cm(2) at 700 degrees C and high steam pressure (0.75 bar of air and 2.25 bar of steam) whereas LSM/BCZY27 60/40 vol% presented a R-p of 18.9 omega cm(2). The backbone electrodes were infiltrated using aqueous solutions of metal precursors to boost the electrocatalytic activity towards water splitting and oxygen evolution. The infiltrated cells were fired at 850 degrees C for 2 h to obtain the desired crystalline nanoparticles (Pr6O11, CeO2, ZrO2 and Pr6O11-CeO2) and electrochemically tested under high steam pressures and bias currents to investigate the influence of catalytic activation on surface exchange kinetics. Among the tested catalysts, the lowest electrode polarization resistances (<0.2 omega cm(2)) were reached for the Pr6O11, CeO2 and Pr6O11-CeO2 catalysts at 700 degrees C by applying current densities ranging from 1.57 to 14.15 mA cm(-2), and the Pr6O11-CeO2-activated LSM/BCZY27 electrode exhibited the best performance. Finally, the effect of pO(2) and pH(2)O was investigated aiming to characterize the rate limiting processes in the electrodes. es_ES
dc.description.sponsorship Financial support by the Spanish Government (Grants SEV-2016-0683, RTI2018-102161 and ENE2014-57651), Generalitat Valenciana (PROMETEO/2018/006) and by the EU through FP7 Electra Project (Grant Agreement 621244) is gratefully acknowledged. The support of the microscopy service at Universitat Politecnica de Valencia (UPV) for the SEM analysis is recognized. es_ES
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation.ispartof RSC Advances es_ES
dc.rights Reconocimiento - No comercial (by-nc) es_ES
dc.title Robust catalytically-activated LSM-BCZY-based composite steam electrodes for proton ceramic electrolysis cells es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c9ra04044g es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//ENE2014-57651-R/ES/ALMACENAMIENTO DE ENERGIA VIA REDUCCION DE CO2 A COMBUSTIBLES Y PRODUCTOS QUIMICOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/621244/EU/High temperature electrolyser with novel proton ceramic tubular modules of superior efficiency, robustness, and lifetime economy/
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F006/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-102161-B-I00/ES/CONVERSION DIRECTA DE CO2 EN PORTADORES DE ENERGIA QUIMICA UTILIZANDO REACTORES ELECTROCATALITICOS DE MEMBRANA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Bausá, N.; Serra Alfaro, JM. (2019). Robust catalytically-activated LSM-BCZY-based composite steam electrodes for proton ceramic electrolysis cells. RSC Advances. 9(36):20677-20686. https://doi.org/10.1039/c9ra04044g es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/c9ra04044g es_ES
dc.description.upvformatpinicio 20677 es_ES
dc.description.upvformatpfin 20686 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 36 es_ES
dc.identifier.eissn 2046-2069 es_ES
dc.relation.pasarela S\390605 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Iwahara, H. (1995). Technological challenges in the application of proton conducting ceramics. Solid State Ionics, 77, 289-298. doi:10.1016/0167-2738(95)00051-7 es_ES
dc.description.references Iwahara, H. (2004). Prospect of hydrogen technology using proton-conducting ceramics. Solid State Ionics, 168(3-4), 299-310. doi:10.1016/j.ssi.2003.03.001 es_ES
dc.description.references Escolástico, S., Solís, C., & Serra, J. M. (2011). Hydrogen separation and stability study of ceramic membranes based on the system Nd5LnWO12. International Journal of Hydrogen Energy, 36(18), 11946-11954. doi:10.1016/j.ijhydene.2011.06.026 es_ES
dc.description.references Solís, C., Vert, V. B., Fabuel, M., & Serra, J. M. (2011). Electrochemical properties of composite cathodes for La0.995Ca0.005NbO4−δ-based proton conducting fuel cells. Journal of Power Sources, 196(22), 9220-9227. doi:10.1016/j.jpowsour.2011.07.041 es_ES
dc.description.references Solís, C., Navarrete, L., Roitsch, S., & Serra, J. M. (2012). Electrochemical properties of composite fuel cell cathodes for La5.5WO12−δ proton conducting electrolytes. Journal of Materials Chemistry, 22(31), 16051. doi:10.1039/c2jm32061d es_ES
dc.description.references Escolástico, S., Solís, C., Kjølseth, C., & Serra, J. M. (2014). Outstanding hydrogen permeation through CO2-stable dual-phase ceramic membranes. Energy Environ. Sci., 7(11), 3736-3746. doi:10.1039/c4ee02066a es_ES
dc.description.references Malerød-Fjeld, H., Clark, D., Yuste-Tirados, I., Zanón, R., Catalán-Martinez, D., Beeaff, D., … Kjølseth, C. (2017). Thermo-electrochemical production of compressed hydrogen from methane with near-zero energy loss. Nature Energy, 2(12), 923-931. doi:10.1038/s41560-017-0029-4 es_ES
dc.description.references Morejudo, S. H., Zanón, R., Escolástico, S., Yuste-Tirados, I., Malerød-Fjeld, H., Vestre, P. K., … Kjølseth, C. (2016). Direct conversion of methane to aromatics in a catalytic co-ionic membrane reactor. Science, 353(6299), 563-566. doi:10.1126/science.aag0274 es_ES
dc.description.references Hossain, S., Abdalla, A. M., Jamain, S. N. B., Zaini, J. H., & Azad, A. K. (2017). A review on proton conducting electrolytes for clean energy and intermediate temperature-solid oxide fuel cells. Renewable and Sustainable Energy Reviews, 79, 750-764. doi:10.1016/j.rser.2017.05.147 es_ES
dc.description.references Leonard, K., Okuyama, Y., Takamura, Y., Lee, Y.-S., Miyazaki, K., Ivanova, M. E., … Matsumoto, H. (2018). Efficient intermediate-temperature steam electrolysis with Y : SrZrO3–SrCeO3 and Y : BaZrO3–BaCeO3 proton conducting perovskites. Journal of Materials Chemistry A, 6(39), 19113-19124. doi:10.1039/c8ta04019b es_ES
dc.description.references Zohourian, R., Merkle, R., Raimondi, G., & Maier, J. (2018). Mixed-Conducting Perovskites as Cathode Materials for Protonic Ceramic Fuel Cells: Understanding the Trends in Proton Uptake. Advanced Functional Materials, 28(35), 1801241. doi:10.1002/adfm.201801241 es_ES
dc.description.references Serra, J. M. (2019). Electrifying chemistry with protonic cells. Nature Energy, 4(3), 178-179. doi:10.1038/s41560-019-0353-y es_ES
dc.description.references Duan, C., Tong, J., Shang, M., Nikodemski, S., Sanders, M., Ricote, S., … O’Hayre, R. (2015). Readily processed protonic ceramic fuel cells with high performance at low temperatures. Science, 349(6254), 1321-1326. doi:10.1126/science.aab3987 es_ES
dc.description.references Choi, S., Kucharczyk, C. J., Liang, Y., Zhang, X., Takeuchi, I., Ji, H.-I., & Haile, S. M. (2018). Exceptional power density and stability at intermediate temperatures in protonic ceramic fuel cells. Nature Energy, 3(3), 202-210. doi:10.1038/s41560-017-0085-9 es_ES
dc.description.references Fabbri, E., Licoccia, S., Traversa, E., & Wachsman, E. D. (2009). Composite Cathodes for Proton Conducting Electrolytes. Fuel Cells, 9(2), 128-138. doi:10.1002/fuce.200800126 es_ES
dc.description.references Vert, V. B., Solís, C., & Serra, J. M. (2010). Electrochemical Properties of PSFC-BCYb Composites as Cathodes for Proton Conducting Solid Oxide Fuel Cells. Fuel Cells, 11(1), 81-90. doi:10.1002/fuce.201000090 es_ES
dc.description.references Perry Murray, E. (2001). (La,Sr)MnO3–(Ce,Gd)O2−x composite cathodes for solid oxide fuel cells. Solid State Ionics, 143(3-4), 265-273. doi:10.1016/s0167-2738(01)00871-2 es_ES
dc.description.references Strandbakke, R., Cherepanov, V. A., Zuev, A. Y., Tsvetkov, D. S., Argirusis, C., Sourkouni, G., … Norby, T. (2015). Gd- and Pr-based double perovskite cobaltites as oxygen electrodes for proton ceramic fuel cells and electrolyser cells. Solid State Ionics, 278, 120-132. doi:10.1016/j.ssi.2015.05.014 es_ES
dc.description.references Gan, Y., Zhang, J., Li, Y., Li, S., Xie, K., & Irvine, J. T. S. (2012). Composite Oxygen Electrode Based on LSCM for Steam Electrolysis in a Proton Conducting Solid Oxide Electrolyzer. Journal of The Electrochemical Society, 159(11), F763-F767. doi:10.1149/2.018212jes es_ES
dc.description.references Bausá, N., Solís, C., Strandbakke, R., & Serra, J. M. (2017). Development of composite steam electrodes for electrolyzers based on barium zirconate. Solid State Ionics, 306, 62-68. doi:10.1016/j.ssi.2017.03.020 es_ES
dc.description.references Liu, Z., Liu, M., Yang, L., & Liu, M. (2013). LSM-infiltrated LSCF cathodes for solid oxide fuel cells. Journal of Energy Chemistry, 22(4), 555-559. doi:10.1016/s2095-4956(13)60072-8 es_ES
dc.description.references Solís, C., Navarrete, L., Bozza, F., Bonanos, N., & Serra, J. M. (2015). Catalytic Surface Promotion of Composite Cathodes in Protonic Ceramic Fuel Cells. ChemElectroChem, 2(8), 1106-1110. doi:10.1002/celc.201500068 es_ES
dc.description.references Ding, H., Sullivan, N. P., & Ricote, S. (2017). Double perovskite Ba2FeMoO6−δ as fuel electrode for protonic-ceramic membranes. Solid State Ionics, 306, 97-103. doi:10.1016/j.ssi.2017.04.007 es_ES
dc.description.references Dippon, M., Babiniec, S. M., Ding, H., Ricote, S., & Sullivan, N. P. (2016). Exploring electronic conduction through BaCe Zr0.9−Y0.1O3−d proton-conducting ceramics. Solid State Ionics, 286, 117-121. doi:10.1016/j.ssi.2016.01.029 es_ES
dc.description.references Jørgensen, M. J., & Mogensen, M. (2001). Impedance of Solid Oxide Fuel Cell LSM/YSZ Composite Cathodes. Journal of The Electrochemical Society, 148(5), A433. doi:10.1149/1.1360203 es_ES
dc.description.references García-Fayos, J., Ruhl, R., Navarrete, L., Bouwmeester, H. J. M., & Serra, J. M. (2018). Enhancing oxygen permeation through Fe2NiO4–Ce0.8Tb0.2O2−δ composite membranes using porous layers activated with Pr6O11 nanoparticles. Journal of Materials Chemistry A, 6(3), 1201-1209. doi:10.1039/c7ta06485c es_ES
dc.description.references Navarrete, L., Solís, C., & Serra, J. M. (2015). Boosting the oxygen reduction reaction mechanisms in IT-SOFC cathodes by catalytic functionalization. Journal of Materials Chemistry A, 3(32), 16440-16444. doi:10.1039/c5ta05187h es_ES
dc.description.references Babiniec, S. M., Ricote, S., & Sullivan, N. P. (2014). Infiltrated Lanthanum Nickelate Cathodes for Use with BaCe0.2Zr0.7Y0.1O3 − δProton Conducting Electrolytes. Journal of The Electrochemical Society, 161(6), F717-F723. doi:10.1149/2.037406jes es_ES
dc.description.references Li, W., Guan, B., Ma, L., Hu, S., Zhang, N., & Liu, X. (2018). High performing triple-conductive Pr2NiO4+δ anode for proton-conducting steam solid oxide electrolysis cell. Journal of Materials Chemistry A, 6(37), 18057-18066. doi:10.1039/c8ta04018d es_ES
dc.description.references Strandbakke, R., Vøllestad, E., Robinson, S. A., Fontaine, M.-L., & Norby, T. (2017). Ba0.5Gd0.8La0.7Co2O6-δInfiltrated in Porous BaZr0.7Ce0.2Y0.1O3Backbones as Electrode Material for Proton Ceramic Electrolytes. Journal of The Electrochemical Society, 164(4), F196-F202. doi:10.1149/2.0141704jes es_ES
dc.description.references Babilo, P., & Haile, S. M. (2005). Enhanced Sintering of Yttrium-Doped Barium Zirconate by Addition of ZnO. Journal of the American Ceramic Society, 88(9), 2362-2368. doi:10.1111/j.1551-2916.2005.00449.x es_ES
dc.description.references Rebollo, E., Mortalò, C., Escolástico, S., Boldrini, S., Barison, S., Serra, J. M., & Fabrizio, M. (2015). Exceptional hydrogen permeation of all-ceramic composite robust membranes based on BaCe0.65Zr0.20Y0.15O3−δ and Y- or Gd-doped ceria. Energy & Environmental Science, 8(12), 3675-3686. doi:10.1039/c5ee01793a es_ES
dc.description.references Fabbri, E., Bi, L., Pergolesi, D., & Traversa, E. (2011). High-performance composite cathodes with tailored mixed conductivity for intermediate temperature solid oxide fuel cells using proton conducting electrolytes. Energy & Environmental Science, 4(12), 4984. doi:10.1039/c1ee02361f es_ES
dc.description.references Ricote, S., Bonanos, N., Wang, H. J., & Haugsrud, R. (2011). Conductivity, transport number measurements and hydration thermodynamics of BaCe0.2Zr0.7Y(0.1−ξ)NiξO(3−δ). Solid State Ionics, 185(1), 11-17. doi:10.1016/j.ssi.2010.12.012 es_ES
dc.description.references He, F., Wu, T., Peng, R., & Xia, C. (2009). Cathode reaction models and performance analysis of Sm0.5Sr0.5CoO3−δ–BaCe0.8Sm0.2O3−δ composite cathode for solid oxide fuel cells with proton conducting electrolyte. Journal of Power Sources, 194(1), 263-268. doi:10.1016/j.jpowsour.2009.04.053 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem