- -

An innovative bioresorbable gelatin based 3D scaffold that maintains the stemness of adipose tissue derived stem cells and the plasticity of differentiated neurons

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

An innovative bioresorbable gelatin based 3D scaffold that maintains the stemness of adipose tissue derived stem cells and the plasticity of differentiated neurons

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Martin, Catherine Ann es_ES
dc.contributor.author Radhakrishnan, Subathra es_ES
dc.contributor.author Nagarajan, Sakthivel es_ES
dc.contributor.author Muthukoori, Shanthini es_ES
dc.contributor.author Meseguer Dueñas, José María es_ES
dc.contributor.author Gómez Ribelles, José Luís es_ES
dc.contributor.author Lakshmi, Baddrireddi Subhadra es_ES
dc.contributor.author Nivethaa, E. A. K. es_ES
dc.contributor.author Gómez-Tejedor, José-Antonio es_ES
dc.contributor.author Reddy, Mettu Srinivas es_ES
dc.contributor.author Sellathamby, Shanmugaapriya es_ES
dc.contributor.author Rela, Mohamed es_ES
dc.contributor.author Subbaraya, Narayana Kalkura es_ES
dc.date.accessioned 2021-02-04T04:32:32Z
dc.date.available 2021-02-04T04:32:32Z
dc.date.issued 2019 es_ES
dc.identifier.uri http://hdl.handle.net/10251/160694
dc.description.abstract [EN] Neural tissue engineering aims at producing a simulated environment using a matrix that is suitable to grow specialized neurons/glial cells pertaining to CNS/PNS which replace damaged or lost tissues. The primary goal of this study is to design a compatible scaffold that supports the development of neural-lineage cells which aids in neural regeneration. The fabricated, freeze-dried scaffolds consisted of biocompatible, natural and synthetic polymers: gelatin and polyvinyl pyrrolidone. Physiochemical characterization was carried out using Fourier Transform Infrared Spectroscopy (FT-IR) and Scanning Electron Microscopy (SEM) imaging. The 3D construct retains good swelling proficiency and holds the integrated structure that supports cell adhesion and proliferation. The composite of PVP-gelatin is blended in such a way that it matches the mechanical strength of the brain tissue. The cytocompatibility analysis shows that the scaffolds are compatible and permissible for the growth of both stem cells as well as differentiated neurons. A change in the ratios of the scaffold components resulted in varied sizes of pores giving diverse surface morphology, greatly influencing the properties of the neurons. However, there is no change in stem cell properties. Different types of neurons are characterized by the type of gene associated with the neurotransmitter secreted by them. The change in the neuron properties could be attributed to neuroplasticity. The plasticity of the neurons was analyzed using quantitative gene expression studies. It has been observed that the gelatin-rich construct supports the prolonged proliferation of stem cells and multiple neurons along with their plasticity. es_ES
dc.description.sponsorship Dr SNK is grateful to the Department of Biotechnology (DBT) BCIL/NER-BPMC/2014-1094 and SVAGATA for the financial support rendered. JMMD and JLGR are grateful for the fi nancial support of the Spanish Ministry of Economy and Competitiveness through the MINECO MAT2016-76039-C4-1-R project (including Feder funds). CIBER-BBN is an initiative funded by the VI National R&D & I Plan 2008-2011, "IniciativaIngenio 2010", Consolider Program. CIBER actions are financed by the "Instituto de Salud Carlos III" with assistance from the European Regional Development Fund. The authors also thank Department of Science and Technology (DST) - SR/WOS-A/LS-193/2012, for the financial support rendered for the cell culture experiments. The authors also thank Dr Jayanthi V., Mr Baskar S. S. and Dr Vishnuvardhanan M., for their contribution in this work. es_ES
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation.ispartof RSC Advances es_ES
dc.rights Reconocimiento - No comercial (by-nc) es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title An innovative bioresorbable gelatin based 3D scaffold that maintains the stemness of adipose tissue derived stem cells and the plasticity of differentiated neurons es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c8ra09688k es_ES
dc.relation.projectID info:eu-repo/grantAgreement/DST//SR%2FWOS-A%2FLS-193%2F2012/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/DBT//BCIL%2FNER-BPMC%2F2014-1094/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2016-76039-C4-1-R/ES/BIOMATERIALES PIEZOELECTRICOS PARA LA DIFERENCIACION CELULAR EN INTERFASES CELULA-MATERIAL ELECTRICAMENTE ACTIVAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.description.bibliographicCitation Martin, CA.; Radhakrishnan, S.; Nagarajan, S.; Muthukoori, S.; Meseguer Dueñas, JM.; Gómez Ribelles, JL.; Lakshmi, BS.... (2019). An innovative bioresorbable gelatin based 3D scaffold that maintains the stemness of adipose tissue derived stem cells and the plasticity of differentiated neurons. RSC Advances. 9(25):14452-14464. https://doi.org/10.1039/c8ra09688k es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/c8ra09688k es_ES
dc.description.upvformatpinicio 14452 es_ES
dc.description.upvformatpfin 14464 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 25 es_ES
dc.identifier.eissn 2046-2069 es_ES
dc.relation.pasarela S\392442 es_ES
dc.contributor.funder Instituto de Salud Carlos III es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Department of Science and Technology, Ministry of Science and Technology, India es_ES
dc.contributor.funder Department of Biotechnology, Ministry of Science and Technology, India es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references World Health Organization , http://www.who.int/features/qa/55/en/ , accessed May 2016 es_ES
dc.description.references Psychguides.com, https://www.psychguides.com/guides/neurological-problem-symptoms-causes-and-effects/ , accessed 2018 es_ES
dc.description.references Savitt, J. M. (2006). Diagnosis and treatment of Parkinson disease: molecules to medicine. Journal of Clinical Investigation, 116(7), 1744-1754. doi:10.1172/jci29178 es_ES
dc.description.references Prashanth, L. K., Fox, S., & Meissner, W. G. (2011). l-Dopa-Induced Dyskinesia—Clinical Presentation, Genetics, and Treatment. Pathophysiology, Pharmacology, and Biochemistry of Dyskinesia, 31-54. doi:10.1016/b978-0-12-381328-2.00002-x es_ES
dc.description.references Iqbal, K., Kazim, S., Bolognin, S., & Blanchard, J. (2014). Shifting balance from neurodegeneration to regeneration of the brain: a novel therapeutic approach to Alzheimer disease and related neurodegenerative conditions. Neural Regeneration Research, 9(16), 1518. doi:10.4103/1673-5374.139477 es_ES
dc.description.references Trounson, A., & Pera, M. (2001). Human embryonic stem cells. Fertility and Sterility, 76(4), 660-661. doi:10.1016/s0015-0282(01)02880-1 es_ES
dc.description.references Xie, J., MacEwan, M. R., Schwartz, A. G., & Xia, Y. (2010). Electrospun nanofibers for neural tissue engineering. Nanoscale, 2(1), 35-44. doi:10.1039/b9nr00243j es_ES
dc.description.references Hedlund, E., Pruszak, J., Lardaro, T., Ludwig, W., Viñuela, A., Kim, K.-S., & Isacson, O. (2008). Embryonic Stem Cell-Derived Pitx3-Enhanced Green Fluorescent Protein Midbrain Dopamine Neurons Survive Enrichment by Fluorescence-Activated Cell Sorting and Function in an Animal Model of Parkinson’s Disease. Stem Cells, 26(6), 1526-1536. doi:10.1634/stemcells.2007-0996 es_ES
dc.description.references Mine, Y., Hayashi, T., Yamada, M., Okano, H., & Kawase, T. (2009). ENVIRONMENTAL CUE-DEPENDENT DOPAMINERGIC NEURONAL DIFFERENTIATION AND FUNCTIONAL EFFECT OF GRAFTED NEUROEPITHELIAL STEM CELLS IN PARKINSONIAN BRAIN. Neurosurgery, 65(4), 741-753. doi:10.1227/01.neu.0000351281.45986.76 es_ES
dc.description.references McLeod, M., Hong, M., Mukhida, K., Sadi, D., Ulalia, R., & Mendez, I. (2006). Erythropoietin and GDNF enhance ventral mesencephalic fiber outgrowth and capillary proliferation following neural transplantation in a rodent model of Parkinson’s disease. European Journal of Neuroscience, 24(2), 361-370. doi:10.1111/j.1460-9568.2006.04919.x es_ES
dc.description.references Li, B., Yamamori, H., Tatebayashi, Y., Shafit-Zagardo, B., Tanimukai, H., Chen, S., … Grundke-Iqbal, I. (2008). Failure of Neuronal Maturation in Alzheimer Disease Dentate Gyrus. Journal of Neuropathology & Experimental Neurology, 67(1), 78-84. doi:10.1097/nen.0b013e318160c5db es_ES
dc.description.references A.DíazLantada , E. C.Mayola , S.Deschamps , B.Pareja Sánchez , J. P.GarcíaRuíz , H.Alarcón Iniesta , Tissue Engineering Scaffolds for Repairing Soft Tissues , in Microsystems for Enhanced Control of Cell Behavior, Studies in Mechanobiology, Tissue Engineering and Biomaterials , ed. A. Díaz Lantada , Springer , Cham , 2016 , vol 18 es_ES
dc.description.references Yasuda, A., Kojima, K., Tinsley, K. W., Yoshioka, H., Mori, Y., & Vacanti, C. A. (2006). In Vitro Culture of Chondrocytes in a Novel Thermoreversible Gelation Polymer Scaffold Containing Growth Factors. Tissue Engineering, 12(5), 1237-1245. doi:10.1089/ten.2006.12.1237 es_ES
dc.description.references SUBRAMANIAN, U. M., KUMAR, S. V., NAGIAH, N., & SIVAGNANAM, U. T. (2014). Fabrication of Polyvinyl Alcohol-Polyvinylpyrrolidone Blend Scaffolds via Electrospinning for Tissue Engineering Applications. International Journal of Polymeric Materials and Polymeric Biomaterials, 63(9), 476-485. doi:10.1080/00914037.2013.854216 es_ES
dc.description.references Lim, J. I., Im, H., & Lee, W.-K. (2014). Fabrication of porous chitosan-polyvinyl pyrrolidone scaffolds from a quaternary system via phase separation. Journal of Biomaterials Science, Polymer Edition, 26(1), 32-41. doi:10.1080/09205063.2014.979386 es_ES
dc.description.references Mansour, H. M., Sohn, M., Al-Ghananeem, A., & DeLuca, P. P. (2010). Materials for Pharmaceutical Dosage Forms: Molecular Pharmaceutics and Controlled Release Drug Delivery Aspects. International Journal of Molecular Sciences, 11(9), 3298-3322. doi:10.3390/ijms11093298 es_ES
dc.description.references Levenberg, S., & Langer, R. (2004). Advances in Tissue Engineering. Current Topics in Developmental Biology, 113-134. doi:10.1016/s0070-2153(04)61005-2 es_ES
dc.description.references Muthyala, S., Bhonde, R. R., & Nair, P. D. (2010). Cytocompatibility studies of mouse pancreatic islets on gelatin - PVP semi IPN scaffolds in vitro: Potential implication towards pancreatic tissue engineering. Islets, 2(6), 357-366. doi:10.4161/isl.2.6.13765 es_ES
dc.description.references Huang, Y., Onyeri, S., Siewe, M., Moshfeghian, A., & Madihally, S. V. (2005). In vitro characterization of chitosan–gelatin scaffolds for tissue engineering. Biomaterials, 26(36), 7616-7627. doi:10.1016/j.biomaterials.2005.05.036 es_ES
dc.description.references Ma, L. (2003). Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering. Biomaterials, 24(26), 4833-4841. doi:10.1016/s0142-9612(03)00374-0 es_ES
dc.description.references Andiappan, M., Sundaramoorthy, S., Panda, N., Meiyazhaban, G., Winfred, S. B., Venkataraman, G., & Krishna, P. (2013). Electrospun eri silk fibroin scaffold coated with hydroxyapatite for bone tissue engineering applications. Progress in Biomaterials, 2(1). doi:10.1186/2194-0517-2-6 es_ES
dc.description.references Zuk, P. A., Zhu, M., Ashjian, P., De Ugarte, D. A., Huang, J. I., Mizuno, H., … Hedrick, M. H. (2002). Human Adipose Tissue Is a Source of Multipotent Stem Cells. Molecular Biology of the Cell, 13(12), 4279-4295. doi:10.1091/mbc.e02-02-0105 es_ES
dc.description.references Cao, Y., Sun, Z., Liao, L., Meng, Y., Han, Q., & Zhao, R. C. (2005). Human adipose tissue-derived stem cells differentiate into endothelial cells in vitro and improve postnatal neovascularization in vivo. Biochemical and Biophysical Research Communications, 332(2), 370-379. doi:10.1016/j.bbrc.2005.04.135 es_ES
dc.description.references Trentz, O. A., Hoerstrup, S. P., Sun, L. K., Bestmann, L., Platz, A., & Trentz, O. L. (2003). Osteoblasts response to allogenic and xenogenic solvent dehydrated cancellous bone in vitro. Biomaterials, 24(20), 3417-3426. doi:10.1016/s0142-9612(03)00205-9 es_ES
dc.description.references Arumugam, S., Trentz, O., Arikketh, D., Senthinathan, V., Rosario, B., & Mohandas, P. V. A. (2011). Detection of embryonic stem cell markers in adult human adipose tissue-derived stem cells. Indian Journal of Pathology and Microbiology, 54(3), 501. doi:10.4103/0377-4929.85082 es_ES
dc.description.references Raucci, M. G., D’Amora, U., Ronca, A., Demitri, C., & Ambrosio, L. (2019). Bioactivation Routes of Gelatin-Based Scaffolds to Enhance at Nanoscale Level Bone Tissue Regeneration. Frontiers in Bioengineering and Biotechnology, 7. doi:10.3389/fbioe.2019.00027 es_ES
dc.description.references Boyer, L. A., Lee, T. I., Cole, M. F., Johnstone, S. E., Levine, S. S., Zucker, J. P., … Young, R. A. (2005). Core Transcriptional Regulatory Circuitry in Human Embryonic Stem Cells. Cell, 122(6), 947-956. doi:10.1016/j.cell.2005.08.020 es_ES
dc.description.references Schengrund, C.-L., & Marangos, P. J. (1980). Neuron-specific enolase levels in primary cultures of neurons. Journal of Neuroscience Research, 5(4), 305-311. doi:10.1002/jnr.490050407 es_ES
dc.description.references Su, Q., Cai, Q., Gerwin, C., Smith, C. L., & Sheng, Z.-H. (2004). Syntabulin is a microtubule-associated protein implicated in syntaxin transport in neurons. Nature Cell Biology, 6(10), 941-953. doi:10.1038/ncb1169 es_ES
dc.description.references Beekman, C., Nichane, M., De Clercq, S., Maetens, M., Floss, T., Wurst, W., … Marine, J.-C. (2006). Evolutionarily Conserved Role of Nucleostemin: Controlling Proliferation of Stem/Progenitor Cells during Early Vertebrate Development. Molecular and Cellular Biology, 26(24), 9291-9301. doi:10.1128/mcb.01183-06 es_ES
dc.description.references Shelke, N. B., Lee, P., Anderson, M., Mistry, N., Nagarale, R. K., Ma, X.-M., … Kumbar, S. G. (2015). Neural tissue engineering: nanofiber-hydrogel based composite scaffolds. Polymers for Advanced Technologies, 27(1), 42-51. doi:10.1002/pat.3594 es_ES
dc.description.references A. D.Lantada , E. C.Mayola , S.Deschamps , et al. , Handbook on Microsystems for Enhanced Control of Cell Behavior: Fundamentals, Design and Manufacturing Strategies, Applications and Challenges , Springer International Publishing , New York city , vol. 1 , 2016 es_ES
dc.description.references Z.Fereshteh , Freeze-drying technologies for 3D scaffold engineering , Functional 3D Tissue Engineering Scaffolds, Materials Technologies and Applications , ed. Y. Deng and J. Kuiper , Wood head Publishing, an imprint of Elsevier , Duxford, United Kingdom , 2018 , pp. 151–174 es_ES
dc.description.references Tu, X., Wang, L., Wei, J., Wang, B., Tang, Y., Shi, J., … Chen, Y. (2016). 3D printed PEGDA microstructures for gelatin scaffold integration and neuron differentiation. Microelectronic Engineering, 158, 30-34. doi:10.1016/j.mee.2016.03.007 es_ES
dc.description.references Hatcher, B. M., Seegert, C. A., & Brennan, A. B. (2003). Polyvinylpyrrolidone modified bioactive glass fibers as tissue constructs:In vitro mesenchymal stem cell response. Journal of Biomedical Materials Research, 66A(4), 840-849. doi:10.1002/jbm.a.10013 es_ES
dc.description.references Davidenko, N., Schuster, C. F., Bax, D. V., Farndale, R. W., Hamaia, S., Best, S. M., & Cameron, R. E. (2016). Evaluation of cell binding to collagen and gelatin: a study of the effect of 2D and 3D architecture and surface chemistry. Journal of Materials Science: Materials in Medicine, 27(10). doi:10.1007/s10856-016-5763-9 es_ES
dc.description.references TAKEICHI, M., & OKADA, T. (1972). Roles of magnesium and calcium ions in cell-to-substrate adhesion. Experimental Cell Research, 74(1), 51-60. doi:10.1016/0014-4827(72)90480-6 es_ES
dc.description.references Loh, Q. L., & Choong, C. (2013). Three-Dimensional Scaffolds for Tissue Engineering Applications: Role of Porosity and Pore Size. Tissue Engineering Part B: Reviews, 19(6), 485-502. doi:10.1089/ten.teb.2012.0437 es_ES
dc.description.references Bishi, D. K., Mathapati, S., Venugopal, J. R., Guhathakurta, S., Cherian, K. M., Ramakrishna, S., & Verma, R. S. (2013). Trans-differentiation of human mesenchymal stem cells generates functional hepatospheres on poly(l-lactic acid)-co-poly(ε-caprolactone)/collagen nanofibrous scaffolds. Journal of Materials Chemistry B, 1(32), 3972. doi:10.1039/c3tb20241k es_ES
dc.description.references Radhakrishnan, S., Anna Trentz, O., Parthasarathy, V. K., & Sellathamby, S. (2017). Human Adipose Tissue-Derived Stem Cells Differentiate to Neuronal-like Lineage Cells without Specific Induction. Cell Biology: Research & Therapy, 06(01). doi:10.4172/2324-9293.1000131 es_ES
dc.description.references Nomura, J., Maruyama, M., Katano, M., Kato, H., Zhang, J., Masui, S., … Okuda, A. (2009). Differential Requirement for Nucleostemin in Embryonic Stem Cell and Neural Stem Cell Viability. Stem Cells, 27(5), 1066-1076. doi:10.1002/stem.44 es_ES
dc.description.references Cai, Q., Gerwin, C., & Sheng, Z.-H. (2005). Syntabulin-mediated anterograde transport of mitochondria along neuronal processes. Journal of Cell Biology, 170(6), 959-969. doi:10.1083/jcb.200506042 es_ES
dc.description.references Skene, J. H. P., Jacobson, R. D., Snipes, G. J., McGuire, C. B., Norden, J. J., & Freeman, J. A. (1986). A Protein Induced During Nerve Growth (GAP-43) is a Major Component of Growth-Cone Membranes. Science, 233(4765), 783-786. doi:10.1126/science.3738509 es_ES
dc.description.references Bark, I. C., Hahn, K. M., Ryabinin, A. E., & Wilson, M. C. (1995). Differential expression of SNAP-25 protein isoforms during divergent vesicle fusion events of neural development. Proceedings of the National Academy of Sciences, 92(5), 1510-1514. doi:10.1073/pnas.92.5.1510 es_ES
dc.description.references Oyler, G. A., Higgins, G. A., Hart, R. A., Battenberg, E., Billingsley, M., Bloom, F. E., & Wilson, M. C. (1989). The identification of a novel synaptosomal-associated protein, SNAP-25, differentially expressed by neuronal subpopulations. Journal of Cell Biology, 109(6), 3039-3052. doi:10.1083/jcb.109.6.3039 es_ES
dc.description.references Shaw, C. A., Lanius, R. A., & van den Doel, K. (1994). The origin of synaptic neuroplasticity: crucial molecules or a dynamical cascade? Brain Research Reviews, 19(3), 241-263. doi:10.1016/0165-0173(94)90014-0 es_ES
dc.description.references Lins, L. C., Wianny, F., Livi, S., Hidalgo, I. A., Dehay, C., Duchet-Rumeau, J., & Gérard, J.-F. (2016). Development of Bioresorbable Hydrophilic–Hydrophobic Electrospun Scaffolds for Neural Tissue Engineering. Biomacromolecules, 17(10), 3172-3187. doi:10.1021/acs.biomac.6b00820 es_ES
dc.description.references A.Samanta , K.Merrett , M.Gerasimov and M.Griffith , Ocular applications of bioresorbable polymers—from basic research to clinical trials, Bioresorbable Polymers for Biomedical Applications: From Fundamentals to Translational Medicine , 2017 , pp. 497–523 es_ES
dc.description.references Feng, B., Wang, S., Hu, D., Fu, W., Wu, J., Hong, H., … Liu, J. (2019). Bioresorbable electrospun gelatin/polycaprolactone nanofibrous membrane as a barrier to prevent cardiac postoperative adhesion. Acta Biomaterialia, 83, 211-220. doi:10.1016/j.actbio.2018.10.022 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem