Mostrar el registro sencillo del ítem
dc.contributor.author | Martin, Catherine Ann | es_ES |
dc.contributor.author | Radhakrishnan, Subathra | es_ES |
dc.contributor.author | Nagarajan, Sakthivel | es_ES |
dc.contributor.author | Muthukoori, Shanthini | es_ES |
dc.contributor.author | Meseguer Dueñas, José María | es_ES |
dc.contributor.author | Gómez Ribelles, José Luís | es_ES |
dc.contributor.author | Lakshmi, Baddrireddi Subhadra | es_ES |
dc.contributor.author | Nivethaa, E. A. K. | es_ES |
dc.contributor.author | Gómez-Tejedor, José-Antonio | es_ES |
dc.contributor.author | Reddy, Mettu Srinivas | es_ES |
dc.contributor.author | Sellathamby, Shanmugaapriya | es_ES |
dc.contributor.author | Rela, Mohamed | es_ES |
dc.contributor.author | Subbaraya, Narayana Kalkura | es_ES |
dc.date.accessioned | 2021-02-04T04:32:32Z | |
dc.date.available | 2021-02-04T04:32:32Z | |
dc.date.issued | 2019 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/160694 | |
dc.description.abstract | [EN] Neural tissue engineering aims at producing a simulated environment using a matrix that is suitable to grow specialized neurons/glial cells pertaining to CNS/PNS which replace damaged or lost tissues. The primary goal of this study is to design a compatible scaffold that supports the development of neural-lineage cells which aids in neural regeneration. The fabricated, freeze-dried scaffolds consisted of biocompatible, natural and synthetic polymers: gelatin and polyvinyl pyrrolidone. Physiochemical characterization was carried out using Fourier Transform Infrared Spectroscopy (FT-IR) and Scanning Electron Microscopy (SEM) imaging. The 3D construct retains good swelling proficiency and holds the integrated structure that supports cell adhesion and proliferation. The composite of PVP-gelatin is blended in such a way that it matches the mechanical strength of the brain tissue. The cytocompatibility analysis shows that the scaffolds are compatible and permissible for the growth of both stem cells as well as differentiated neurons. A change in the ratios of the scaffold components resulted in varied sizes of pores giving diverse surface morphology, greatly influencing the properties of the neurons. However, there is no change in stem cell properties. Different types of neurons are characterized by the type of gene associated with the neurotransmitter secreted by them. The change in the neuron properties could be attributed to neuroplasticity. The plasticity of the neurons was analyzed using quantitative gene expression studies. It has been observed that the gelatin-rich construct supports the prolonged proliferation of stem cells and multiple neurons along with their plasticity. | es_ES |
dc.description.sponsorship | Dr SNK is grateful to the Department of Biotechnology (DBT) BCIL/NER-BPMC/2014-1094 and SVAGATA for the financial support rendered. JMMD and JLGR are grateful for the fi nancial support of the Spanish Ministry of Economy and Competitiveness through the MINECO MAT2016-76039-C4-1-R project (including Feder funds). CIBER-BBN is an initiative funded by the VI National R&D & I Plan 2008-2011, "IniciativaIngenio 2010", Consolider Program. CIBER actions are financed by the "Instituto de Salud Carlos III" with assistance from the European Regional Development Fund. The authors also thank Department of Science and Technology (DST) - SR/WOS-A/LS-193/2012, for the financial support rendered for the cell culture experiments. The authors also thank Dr Jayanthi V., Mr Baskar S. S. and Dr Vishnuvardhanan M., for their contribution in this work. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | The Royal Society of Chemistry | es_ES |
dc.relation.ispartof | RSC Advances | es_ES |
dc.rights | Reconocimiento - No comercial (by-nc) | es_ES |
dc.subject.classification | CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | An innovative bioresorbable gelatin based 3D scaffold that maintains the stemness of adipose tissue derived stem cells and the plasticity of differentiated neurons | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1039/c8ra09688k | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/DST//SR%2FWOS-A%2FLS-193%2F2012/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/DBT//BCIL%2FNER-BPMC%2F2014-1094/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MAT2016-76039-C4-1-R/ES/BIOMATERIALES PIEZOELECTRICOS PARA LA DIFERENCIACION CELULAR EN INTERFASES CELULA-MATERIAL ELECTRICAMENTE ACTIVAS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada | es_ES |
dc.description.bibliographicCitation | Martin, CA.; Radhakrishnan, S.; Nagarajan, S.; Muthukoori, S.; Meseguer Dueñas, JM.; Gómez Ribelles, JL.; Lakshmi, BS.... (2019). An innovative bioresorbable gelatin based 3D scaffold that maintains the stemness of adipose tissue derived stem cells and the plasticity of differentiated neurons. RSC Advances. 9(25):14452-14464. https://doi.org/10.1039/c8ra09688k | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1039/c8ra09688k | es_ES |
dc.description.upvformatpinicio | 14452 | es_ES |
dc.description.upvformatpfin | 14464 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 9 | es_ES |
dc.description.issue | 25 | es_ES |
dc.identifier.eissn | 2046-2069 | es_ES |
dc.relation.pasarela | S\392442 | es_ES |
dc.contributor.funder | Instituto de Salud Carlos III | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Department of Science and Technology, Ministry of Science and Technology, India | es_ES |
dc.contributor.funder | Department of Biotechnology, Ministry of Science and Technology, India | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | World Health Organization , http://www.who.int/features/qa/55/en/ , accessed May 2016 | es_ES |
dc.description.references | Psychguides.com, https://www.psychguides.com/guides/neurological-problem-symptoms-causes-and-effects/ , accessed 2018 | es_ES |
dc.description.references | Savitt, J. M. (2006). Diagnosis and treatment of Parkinson disease: molecules to medicine. Journal of Clinical Investigation, 116(7), 1744-1754. doi:10.1172/jci29178 | es_ES |
dc.description.references | Prashanth, L. K., Fox, S., & Meissner, W. G. (2011). l-Dopa-Induced Dyskinesia—Clinical Presentation, Genetics, and Treatment. Pathophysiology, Pharmacology, and Biochemistry of Dyskinesia, 31-54. doi:10.1016/b978-0-12-381328-2.00002-x | es_ES |
dc.description.references | Iqbal, K., Kazim, S., Bolognin, S., & Blanchard, J. (2014). Shifting balance from neurodegeneration to regeneration of the brain: a novel therapeutic approach to Alzheimer disease and related neurodegenerative conditions. Neural Regeneration Research, 9(16), 1518. doi:10.4103/1673-5374.139477 | es_ES |
dc.description.references | Trounson, A., & Pera, M. (2001). Human embryonic stem cells. Fertility and Sterility, 76(4), 660-661. doi:10.1016/s0015-0282(01)02880-1 | es_ES |
dc.description.references | Xie, J., MacEwan, M. R., Schwartz, A. G., & Xia, Y. (2010). Electrospun nanofibers for neural tissue engineering. Nanoscale, 2(1), 35-44. doi:10.1039/b9nr00243j | es_ES |
dc.description.references | Hedlund, E., Pruszak, J., Lardaro, T., Ludwig, W., Viñuela, A., Kim, K.-S., & Isacson, O. (2008). Embryonic Stem Cell-Derived Pitx3-Enhanced Green Fluorescent Protein Midbrain Dopamine Neurons Survive Enrichment by Fluorescence-Activated Cell Sorting and Function in an Animal Model of Parkinson’s Disease. Stem Cells, 26(6), 1526-1536. doi:10.1634/stemcells.2007-0996 | es_ES |
dc.description.references | Mine, Y., Hayashi, T., Yamada, M., Okano, H., & Kawase, T. (2009). ENVIRONMENTAL CUE-DEPENDENT DOPAMINERGIC NEURONAL DIFFERENTIATION AND FUNCTIONAL EFFECT OF GRAFTED NEUROEPITHELIAL STEM CELLS IN PARKINSONIAN BRAIN. Neurosurgery, 65(4), 741-753. doi:10.1227/01.neu.0000351281.45986.76 | es_ES |
dc.description.references | McLeod, M., Hong, M., Mukhida, K., Sadi, D., Ulalia, R., & Mendez, I. (2006). Erythropoietin and GDNF enhance ventral mesencephalic fiber outgrowth and capillary proliferation following neural transplantation in a rodent model of Parkinson’s disease. European Journal of Neuroscience, 24(2), 361-370. doi:10.1111/j.1460-9568.2006.04919.x | es_ES |
dc.description.references | Li, B., Yamamori, H., Tatebayashi, Y., Shafit-Zagardo, B., Tanimukai, H., Chen, S., … Grundke-Iqbal, I. (2008). Failure of Neuronal Maturation in Alzheimer Disease Dentate Gyrus. Journal of Neuropathology & Experimental Neurology, 67(1), 78-84. doi:10.1097/nen.0b013e318160c5db | es_ES |
dc.description.references | A.DíazLantada , E. C.Mayola , S.Deschamps , B.Pareja Sánchez , J. P.GarcíaRuíz , H.Alarcón Iniesta , Tissue Engineering Scaffolds for Repairing Soft Tissues , in Microsystems for Enhanced Control of Cell Behavior, Studies in Mechanobiology, Tissue Engineering and Biomaterials , ed. A. Díaz Lantada , Springer , Cham , 2016 , vol 18 | es_ES |
dc.description.references | Yasuda, A., Kojima, K., Tinsley, K. W., Yoshioka, H., Mori, Y., & Vacanti, C. A. (2006). In Vitro Culture of Chondrocytes in a Novel Thermoreversible Gelation Polymer Scaffold Containing Growth Factors. Tissue Engineering, 12(5), 1237-1245. doi:10.1089/ten.2006.12.1237 | es_ES |
dc.description.references | SUBRAMANIAN, U. M., KUMAR, S. V., NAGIAH, N., & SIVAGNANAM, U. T. (2014). Fabrication of Polyvinyl Alcohol-Polyvinylpyrrolidone Blend Scaffolds via Electrospinning for Tissue Engineering Applications. International Journal of Polymeric Materials and Polymeric Biomaterials, 63(9), 476-485. doi:10.1080/00914037.2013.854216 | es_ES |
dc.description.references | Lim, J. I., Im, H., & Lee, W.-K. (2014). Fabrication of porous chitosan-polyvinyl pyrrolidone scaffolds from a quaternary system via phase separation. Journal of Biomaterials Science, Polymer Edition, 26(1), 32-41. doi:10.1080/09205063.2014.979386 | es_ES |
dc.description.references | Mansour, H. M., Sohn, M., Al-Ghananeem, A., & DeLuca, P. P. (2010). Materials for Pharmaceutical Dosage Forms: Molecular Pharmaceutics and Controlled Release Drug Delivery Aspects. International Journal of Molecular Sciences, 11(9), 3298-3322. doi:10.3390/ijms11093298 | es_ES |
dc.description.references | Levenberg, S., & Langer, R. (2004). Advances in Tissue Engineering. Current Topics in Developmental Biology, 113-134. doi:10.1016/s0070-2153(04)61005-2 | es_ES |
dc.description.references | Muthyala, S., Bhonde, R. R., & Nair, P. D. (2010). Cytocompatibility studies of mouse pancreatic islets on gelatin - PVP semi IPN scaffolds in vitro: Potential implication towards pancreatic tissue engineering. Islets, 2(6), 357-366. doi:10.4161/isl.2.6.13765 | es_ES |
dc.description.references | Huang, Y., Onyeri, S., Siewe, M., Moshfeghian, A., & Madihally, S. V. (2005). In vitro characterization of chitosan–gelatin scaffolds for tissue engineering. Biomaterials, 26(36), 7616-7627. doi:10.1016/j.biomaterials.2005.05.036 | es_ES |
dc.description.references | Ma, L. (2003). Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering. Biomaterials, 24(26), 4833-4841. doi:10.1016/s0142-9612(03)00374-0 | es_ES |
dc.description.references | Andiappan, M., Sundaramoorthy, S., Panda, N., Meiyazhaban, G., Winfred, S. B., Venkataraman, G., & Krishna, P. (2013). Electrospun eri silk fibroin scaffold coated with hydroxyapatite for bone tissue engineering applications. Progress in Biomaterials, 2(1). doi:10.1186/2194-0517-2-6 | es_ES |
dc.description.references | Zuk, P. A., Zhu, M., Ashjian, P., De Ugarte, D. A., Huang, J. I., Mizuno, H., … Hedrick, M. H. (2002). Human Adipose Tissue Is a Source of Multipotent Stem Cells. Molecular Biology of the Cell, 13(12), 4279-4295. doi:10.1091/mbc.e02-02-0105 | es_ES |
dc.description.references | Cao, Y., Sun, Z., Liao, L., Meng, Y., Han, Q., & Zhao, R. C. (2005). Human adipose tissue-derived stem cells differentiate into endothelial cells in vitro and improve postnatal neovascularization in vivo. Biochemical and Biophysical Research Communications, 332(2), 370-379. doi:10.1016/j.bbrc.2005.04.135 | es_ES |
dc.description.references | Trentz, O. A., Hoerstrup, S. P., Sun, L. K., Bestmann, L., Platz, A., & Trentz, O. L. (2003). Osteoblasts response to allogenic and xenogenic solvent dehydrated cancellous bone in vitro. Biomaterials, 24(20), 3417-3426. doi:10.1016/s0142-9612(03)00205-9 | es_ES |
dc.description.references | Arumugam, S., Trentz, O., Arikketh, D., Senthinathan, V., Rosario, B., & Mohandas, P. V. A. (2011). Detection of embryonic stem cell markers in adult human adipose tissue-derived stem cells. Indian Journal of Pathology and Microbiology, 54(3), 501. doi:10.4103/0377-4929.85082 | es_ES |
dc.description.references | Raucci, M. G., D’Amora, U., Ronca, A., Demitri, C., & Ambrosio, L. (2019). Bioactivation Routes of Gelatin-Based Scaffolds to Enhance at Nanoscale Level Bone Tissue Regeneration. Frontiers in Bioengineering and Biotechnology, 7. doi:10.3389/fbioe.2019.00027 | es_ES |
dc.description.references | Boyer, L. A., Lee, T. I., Cole, M. F., Johnstone, S. E., Levine, S. S., Zucker, J. P., … Young, R. A. (2005). Core Transcriptional Regulatory Circuitry in Human Embryonic Stem Cells. Cell, 122(6), 947-956. doi:10.1016/j.cell.2005.08.020 | es_ES |
dc.description.references | Schengrund, C.-L., & Marangos, P. J. (1980). Neuron-specific enolase levels in primary cultures of neurons. Journal of Neuroscience Research, 5(4), 305-311. doi:10.1002/jnr.490050407 | es_ES |
dc.description.references | Su, Q., Cai, Q., Gerwin, C., Smith, C. L., & Sheng, Z.-H. (2004). Syntabulin is a microtubule-associated protein implicated in syntaxin transport in neurons. Nature Cell Biology, 6(10), 941-953. doi:10.1038/ncb1169 | es_ES |
dc.description.references | Beekman, C., Nichane, M., De Clercq, S., Maetens, M., Floss, T., Wurst, W., … Marine, J.-C. (2006). Evolutionarily Conserved Role of Nucleostemin: Controlling Proliferation of Stem/Progenitor Cells during Early Vertebrate Development. Molecular and Cellular Biology, 26(24), 9291-9301. doi:10.1128/mcb.01183-06 | es_ES |
dc.description.references | Shelke, N. B., Lee, P., Anderson, M., Mistry, N., Nagarale, R. K., Ma, X.-M., … Kumbar, S. G. (2015). Neural tissue engineering: nanofiber-hydrogel based composite scaffolds. Polymers for Advanced Technologies, 27(1), 42-51. doi:10.1002/pat.3594 | es_ES |
dc.description.references | A. D.Lantada , E. C.Mayola , S.Deschamps , et al. , Handbook on Microsystems for Enhanced Control of Cell Behavior: Fundamentals, Design and Manufacturing Strategies, Applications and Challenges , Springer International Publishing , New York city , vol. 1 , 2016 | es_ES |
dc.description.references | Z.Fereshteh , Freeze-drying technologies for 3D scaffold engineering , Functional 3D Tissue Engineering Scaffolds, Materials Technologies and Applications , ed. Y. Deng and J. Kuiper , Wood head Publishing, an imprint of Elsevier , Duxford, United Kingdom , 2018 , pp. 151–174 | es_ES |
dc.description.references | Tu, X., Wang, L., Wei, J., Wang, B., Tang, Y., Shi, J., … Chen, Y. (2016). 3D printed PEGDA microstructures for gelatin scaffold integration and neuron differentiation. Microelectronic Engineering, 158, 30-34. doi:10.1016/j.mee.2016.03.007 | es_ES |
dc.description.references | Hatcher, B. M., Seegert, C. A., & Brennan, A. B. (2003). Polyvinylpyrrolidone modified bioactive glass fibers as tissue constructs:In vitro mesenchymal stem cell response. Journal of Biomedical Materials Research, 66A(4), 840-849. doi:10.1002/jbm.a.10013 | es_ES |
dc.description.references | Davidenko, N., Schuster, C. F., Bax, D. V., Farndale, R. W., Hamaia, S., Best, S. M., & Cameron, R. E. (2016). Evaluation of cell binding to collagen and gelatin: a study of the effect of 2D and 3D architecture and surface chemistry. Journal of Materials Science: Materials in Medicine, 27(10). doi:10.1007/s10856-016-5763-9 | es_ES |
dc.description.references | TAKEICHI, M., & OKADA, T. (1972). Roles of magnesium and calcium ions in cell-to-substrate adhesion. Experimental Cell Research, 74(1), 51-60. doi:10.1016/0014-4827(72)90480-6 | es_ES |
dc.description.references | Loh, Q. L., & Choong, C. (2013). Three-Dimensional Scaffolds for Tissue Engineering Applications: Role of Porosity and Pore Size. Tissue Engineering Part B: Reviews, 19(6), 485-502. doi:10.1089/ten.teb.2012.0437 | es_ES |
dc.description.references | Bishi, D. K., Mathapati, S., Venugopal, J. R., Guhathakurta, S., Cherian, K. M., Ramakrishna, S., & Verma, R. S. (2013). Trans-differentiation of human mesenchymal stem cells generates functional hepatospheres on poly(l-lactic acid)-co-poly(ε-caprolactone)/collagen nanofibrous scaffolds. Journal of Materials Chemistry B, 1(32), 3972. doi:10.1039/c3tb20241k | es_ES |
dc.description.references | Radhakrishnan, S., Anna Trentz, O., Parthasarathy, V. K., & Sellathamby, S. (2017). Human Adipose Tissue-Derived Stem Cells Differentiate to Neuronal-like Lineage Cells without Specific Induction. Cell Biology: Research & Therapy, 06(01). doi:10.4172/2324-9293.1000131 | es_ES |
dc.description.references | Nomura, J., Maruyama, M., Katano, M., Kato, H., Zhang, J., Masui, S., … Okuda, A. (2009). Differential Requirement for Nucleostemin in Embryonic Stem Cell and Neural Stem Cell Viability. Stem Cells, 27(5), 1066-1076. doi:10.1002/stem.44 | es_ES |
dc.description.references | Cai, Q., Gerwin, C., & Sheng, Z.-H. (2005). Syntabulin-mediated anterograde transport of mitochondria along neuronal processes. Journal of Cell Biology, 170(6), 959-969. doi:10.1083/jcb.200506042 | es_ES |
dc.description.references | Skene, J. H. P., Jacobson, R. D., Snipes, G. J., McGuire, C. B., Norden, J. J., & Freeman, J. A. (1986). A Protein Induced During Nerve Growth (GAP-43) is a Major Component of Growth-Cone Membranes. Science, 233(4765), 783-786. doi:10.1126/science.3738509 | es_ES |
dc.description.references | Bark, I. C., Hahn, K. M., Ryabinin, A. E., & Wilson, M. C. (1995). Differential expression of SNAP-25 protein isoforms during divergent vesicle fusion events of neural development. Proceedings of the National Academy of Sciences, 92(5), 1510-1514. doi:10.1073/pnas.92.5.1510 | es_ES |
dc.description.references | Oyler, G. A., Higgins, G. A., Hart, R. A., Battenberg, E., Billingsley, M., Bloom, F. E., & Wilson, M. C. (1989). The identification of a novel synaptosomal-associated protein, SNAP-25, differentially expressed by neuronal subpopulations. Journal of Cell Biology, 109(6), 3039-3052. doi:10.1083/jcb.109.6.3039 | es_ES |
dc.description.references | Shaw, C. A., Lanius, R. A., & van den Doel, K. (1994). The origin of synaptic neuroplasticity: crucial molecules or a dynamical cascade? Brain Research Reviews, 19(3), 241-263. doi:10.1016/0165-0173(94)90014-0 | es_ES |
dc.description.references | Lins, L. C., Wianny, F., Livi, S., Hidalgo, I. A., Dehay, C., Duchet-Rumeau, J., & Gérard, J.-F. (2016). Development of Bioresorbable Hydrophilic–Hydrophobic Electrospun Scaffolds for Neural Tissue Engineering. Biomacromolecules, 17(10), 3172-3187. doi:10.1021/acs.biomac.6b00820 | es_ES |
dc.description.references | A.Samanta , K.Merrett , M.Gerasimov and M.Griffith , Ocular applications of bioresorbable polymers—from basic research to clinical trials, Bioresorbable Polymers for Biomedical Applications: From Fundamentals to Translational Medicine , 2017 , pp. 497–523 | es_ES |
dc.description.references | Feng, B., Wang, S., Hu, D., Fu, W., Wu, J., Hong, H., … Liu, J. (2019). Bioresorbable electrospun gelatin/polycaprolactone nanofibrous membrane as a barrier to prevent cardiac postoperative adhesion. Acta Biomaterialia, 83, 211-220. doi:10.1016/j.actbio.2018.10.022 | es_ES |