- -

An innovative bioresorbable gelatin based 3D scaffold that maintains the stemness of adipose tissue derived stem cells and the plasticity of differentiated neurons

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

An innovative bioresorbable gelatin based 3D scaffold that maintains the stemness of adipose tissue derived stem cells and the plasticity of differentiated neurons

Mostrar el registro completo del ítem

Martin, CA.; Radhakrishnan, S.; Nagarajan, S.; Muthukoori, S.; Meseguer Dueñas, JM.; Gómez Ribelles, JL.; Lakshmi, BS.... (2019). An innovative bioresorbable gelatin based 3D scaffold that maintains the stemness of adipose tissue derived stem cells and the plasticity of differentiated neurons. RSC Advances. 9(25):14452-14464. https://doi.org/10.1039/c8ra09688k

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/160694

Ficheros en el ítem

Metadatos del ítem

Título: An innovative bioresorbable gelatin based 3D scaffold that maintains the stemness of adipose tissue derived stem cells and the plasticity of differentiated neurons
Autor: Martin, Catherine Ann Radhakrishnan, Subathra Nagarajan, Sakthivel Muthukoori, Shanthini Meseguer Dueñas, José María Gómez Ribelles, José Luís Lakshmi, Baddrireddi Subhadra Nivethaa, E. A. K. Gómez-Tejedor, José-Antonio Reddy, Mettu Srinivas Sellathamby, Shanmugaapriya Rela, Mohamed Subbaraya, Narayana Kalkura
Entidad UPV: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Fecha difusión:
Resumen:
[EN] Neural tissue engineering aims at producing a simulated environment using a matrix that is suitable to grow specialized neurons/glial cells pertaining to CNS/PNS which replace damaged or lost tissues. The primary goal ...[+]
Derechos de uso: Reconocimiento - No comercial (by-nc)
Fuente:
RSC Advances. (eissn: 2046-2069 )
DOI: 10.1039/c8ra09688k
Editorial:
The Royal Society of Chemistry
Versión del editor: https://doi.org/10.1039/c8ra09688k
Código del Proyecto:
info:eu-repo/grantAgreement/DST//SR%2FWOS-A%2FLS-193%2F2012/
info:eu-repo/grantAgreement/DBT//BCIL%2FNER-BPMC%2F2014-1094/
info:eu-repo/grantAgreement/MINECO//MAT2016-76039-C4-1-R/ES/BIOMATERIALES PIEZOELECTRICOS PARA LA DIFERENCIACION CELULAR EN INTERFASES CELULA-MATERIAL ELECTRICAMENTE ACTIVAS/
Agradecimientos:
Dr SNK is grateful to the Department of Biotechnology (DBT) BCIL/NER-BPMC/2014-1094 and SVAGATA for the financial support rendered. JMMD and JLGR are grateful for the fi nancial support of the Spanish Ministry of Economy ...[+]
Tipo: Artículo

References

World Health Organization , http://www.who.int/features/qa/55/en/ , accessed May 2016

Psychguides.com, https://www.psychguides.com/guides/neurological-problem-symptoms-causes-and-effects/ , accessed 2018

Savitt, J. M. (2006). Diagnosis and treatment of Parkinson disease: molecules to medicine. Journal of Clinical Investigation, 116(7), 1744-1754. doi:10.1172/jci29178 [+]
World Health Organization , http://www.who.int/features/qa/55/en/ , accessed May 2016

Psychguides.com, https://www.psychguides.com/guides/neurological-problem-symptoms-causes-and-effects/ , accessed 2018

Savitt, J. M. (2006). Diagnosis and treatment of Parkinson disease: molecules to medicine. Journal of Clinical Investigation, 116(7), 1744-1754. doi:10.1172/jci29178

Prashanth, L. K., Fox, S., & Meissner, W. G. (2011). l-Dopa-Induced Dyskinesia—Clinical Presentation, Genetics, and Treatment. Pathophysiology, Pharmacology, and Biochemistry of Dyskinesia, 31-54. doi:10.1016/b978-0-12-381328-2.00002-x

Iqbal, K., Kazim, S., Bolognin, S., & Blanchard, J. (2014). Shifting balance from neurodegeneration to regeneration of the brain: a novel therapeutic approach to Alzheimer disease and related neurodegenerative conditions. Neural Regeneration Research, 9(16), 1518. doi:10.4103/1673-5374.139477

Trounson, A., & Pera, M. (2001). Human embryonic stem cells. Fertility and Sterility, 76(4), 660-661. doi:10.1016/s0015-0282(01)02880-1

Xie, J., MacEwan, M. R., Schwartz, A. G., & Xia, Y. (2010). Electrospun nanofibers for neural tissue engineering. Nanoscale, 2(1), 35-44. doi:10.1039/b9nr00243j

Hedlund, E., Pruszak, J., Lardaro, T., Ludwig, W., Viñuela, A., Kim, K.-S., & Isacson, O. (2008). Embryonic Stem Cell-Derived Pitx3-Enhanced Green Fluorescent Protein Midbrain Dopamine Neurons Survive Enrichment by Fluorescence-Activated Cell Sorting and Function in an Animal Model of Parkinson’s Disease. Stem Cells, 26(6), 1526-1536. doi:10.1634/stemcells.2007-0996

Mine, Y., Hayashi, T., Yamada, M., Okano, H., & Kawase, T. (2009). ENVIRONMENTAL CUE-DEPENDENT DOPAMINERGIC NEURONAL DIFFERENTIATION AND FUNCTIONAL EFFECT OF GRAFTED NEUROEPITHELIAL STEM CELLS IN PARKINSONIAN BRAIN. Neurosurgery, 65(4), 741-753. doi:10.1227/01.neu.0000351281.45986.76

McLeod, M., Hong, M., Mukhida, K., Sadi, D., Ulalia, R., & Mendez, I. (2006). Erythropoietin and GDNF enhance ventral mesencephalic fiber outgrowth and capillary proliferation following neural transplantation in a rodent model of Parkinson’s disease. European Journal of Neuroscience, 24(2), 361-370. doi:10.1111/j.1460-9568.2006.04919.x

Li, B., Yamamori, H., Tatebayashi, Y., Shafit-Zagardo, B., Tanimukai, H., Chen, S., … Grundke-Iqbal, I. (2008). Failure of Neuronal Maturation in Alzheimer Disease Dentate Gyrus. Journal of Neuropathology & Experimental Neurology, 67(1), 78-84. doi:10.1097/nen.0b013e318160c5db

A.DíazLantada , E. C.Mayola , S.Deschamps , B.Pareja Sánchez , J. P.GarcíaRuíz , H.Alarcón Iniesta , Tissue Engineering Scaffolds for Repairing Soft Tissues , in Microsystems for Enhanced Control of Cell Behavior, Studies in Mechanobiology, Tissue Engineering and Biomaterials , ed. A. Díaz Lantada , Springer , Cham , 2016 , vol 18

Yasuda, A., Kojima, K., Tinsley, K. W., Yoshioka, H., Mori, Y., & Vacanti, C. A. (2006). In Vitro Culture of Chondrocytes in a Novel Thermoreversible Gelation Polymer Scaffold Containing Growth Factors. Tissue Engineering, 12(5), 1237-1245. doi:10.1089/ten.2006.12.1237

SUBRAMANIAN, U. M., KUMAR, S. V., NAGIAH, N., & SIVAGNANAM, U. T. (2014). Fabrication of Polyvinyl Alcohol-Polyvinylpyrrolidone Blend Scaffolds via Electrospinning for Tissue Engineering Applications. International Journal of Polymeric Materials and Polymeric Biomaterials, 63(9), 476-485. doi:10.1080/00914037.2013.854216

Lim, J. I., Im, H., & Lee, W.-K. (2014). Fabrication of porous chitosan-polyvinyl pyrrolidone scaffolds from a quaternary system via phase separation. Journal of Biomaterials Science, Polymer Edition, 26(1), 32-41. doi:10.1080/09205063.2014.979386

Mansour, H. M., Sohn, M., Al-Ghananeem, A., & DeLuca, P. P. (2010). Materials for Pharmaceutical Dosage Forms: Molecular Pharmaceutics and Controlled Release Drug Delivery Aspects. International Journal of Molecular Sciences, 11(9), 3298-3322. doi:10.3390/ijms11093298

Levenberg, S., & Langer, R. (2004). Advances in Tissue Engineering. Current Topics in Developmental Biology, 113-134. doi:10.1016/s0070-2153(04)61005-2

Muthyala, S., Bhonde, R. R., & Nair, P. D. (2010). Cytocompatibility studies of mouse pancreatic islets on gelatin - PVP semi IPN scaffolds in vitro: Potential implication towards pancreatic tissue engineering. Islets, 2(6), 357-366. doi:10.4161/isl.2.6.13765

Huang, Y., Onyeri, S., Siewe, M., Moshfeghian, A., & Madihally, S. V. (2005). In vitro characterization of chitosan–gelatin scaffolds for tissue engineering. Biomaterials, 26(36), 7616-7627. doi:10.1016/j.biomaterials.2005.05.036

Ma, L. (2003). Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering. Biomaterials, 24(26), 4833-4841. doi:10.1016/s0142-9612(03)00374-0

Andiappan, M., Sundaramoorthy, S., Panda, N., Meiyazhaban, G., Winfred, S. B., Venkataraman, G., & Krishna, P. (2013). Electrospun eri silk fibroin scaffold coated with hydroxyapatite for bone tissue engineering applications. Progress in Biomaterials, 2(1). doi:10.1186/2194-0517-2-6

Zuk, P. A., Zhu, M., Ashjian, P., De Ugarte, D. A., Huang, J. I., Mizuno, H., … Hedrick, M. H. (2002). Human Adipose Tissue Is a Source of Multipotent Stem Cells. Molecular Biology of the Cell, 13(12), 4279-4295. doi:10.1091/mbc.e02-02-0105

Cao, Y., Sun, Z., Liao, L., Meng, Y., Han, Q., & Zhao, R. C. (2005). Human adipose tissue-derived stem cells differentiate into endothelial cells in vitro and improve postnatal neovascularization in vivo. Biochemical and Biophysical Research Communications, 332(2), 370-379. doi:10.1016/j.bbrc.2005.04.135

Trentz, O. A., Hoerstrup, S. P., Sun, L. K., Bestmann, L., Platz, A., & Trentz, O. L. (2003). Osteoblasts response to allogenic and xenogenic solvent dehydrated cancellous bone in vitro. Biomaterials, 24(20), 3417-3426. doi:10.1016/s0142-9612(03)00205-9

Arumugam, S., Trentz, O., Arikketh, D., Senthinathan, V., Rosario, B., & Mohandas, P. V. A. (2011). Detection of embryonic stem cell markers in adult human adipose tissue-derived stem cells. Indian Journal of Pathology and Microbiology, 54(3), 501. doi:10.4103/0377-4929.85082

Raucci, M. G., D’Amora, U., Ronca, A., Demitri, C., & Ambrosio, L. (2019). Bioactivation Routes of Gelatin-Based Scaffolds to Enhance at Nanoscale Level Bone Tissue Regeneration. Frontiers in Bioengineering and Biotechnology, 7. doi:10.3389/fbioe.2019.00027

Boyer, L. A., Lee, T. I., Cole, M. F., Johnstone, S. E., Levine, S. S., Zucker, J. P., … Young, R. A. (2005). Core Transcriptional Regulatory Circuitry in Human Embryonic Stem Cells. Cell, 122(6), 947-956. doi:10.1016/j.cell.2005.08.020

Schengrund, C.-L., & Marangos, P. J. (1980). Neuron-specific enolase levels in primary cultures of neurons. Journal of Neuroscience Research, 5(4), 305-311. doi:10.1002/jnr.490050407

Su, Q., Cai, Q., Gerwin, C., Smith, C. L., & Sheng, Z.-H. (2004). Syntabulin is a microtubule-associated protein implicated in syntaxin transport in neurons. Nature Cell Biology, 6(10), 941-953. doi:10.1038/ncb1169

Beekman, C., Nichane, M., De Clercq, S., Maetens, M., Floss, T., Wurst, W., … Marine, J.-C. (2006). Evolutionarily Conserved Role of Nucleostemin: Controlling Proliferation of Stem/Progenitor Cells during Early Vertebrate Development. Molecular and Cellular Biology, 26(24), 9291-9301. doi:10.1128/mcb.01183-06

Shelke, N. B., Lee, P., Anderson, M., Mistry, N., Nagarale, R. K., Ma, X.-M., … Kumbar, S. G. (2015). Neural tissue engineering: nanofiber-hydrogel based composite scaffolds. Polymers for Advanced Technologies, 27(1), 42-51. doi:10.1002/pat.3594

A. D.Lantada , E. C.Mayola , S.Deschamps , et al. , Handbook on Microsystems for Enhanced Control of Cell Behavior: Fundamentals, Design and Manufacturing Strategies, Applications and Challenges , Springer International Publishing , New York city , vol. 1 , 2016

Z.Fereshteh , Freeze-drying technologies for 3D scaffold engineering , Functional 3D Tissue Engineering Scaffolds, Materials Technologies and Applications , ed. Y. Deng and J. Kuiper , Wood head Publishing, an imprint of Elsevier , Duxford, United Kingdom , 2018 , pp. 151–174

Tu, X., Wang, L., Wei, J., Wang, B., Tang, Y., Shi, J., … Chen, Y. (2016). 3D printed PEGDA microstructures for gelatin scaffold integration and neuron differentiation. Microelectronic Engineering, 158, 30-34. doi:10.1016/j.mee.2016.03.007

Hatcher, B. M., Seegert, C. A., & Brennan, A. B. (2003). Polyvinylpyrrolidone modified bioactive glass fibers as tissue constructs:In vitro mesenchymal stem cell response. Journal of Biomedical Materials Research, 66A(4), 840-849. doi:10.1002/jbm.a.10013

Davidenko, N., Schuster, C. F., Bax, D. V., Farndale, R. W., Hamaia, S., Best, S. M., & Cameron, R. E. (2016). Evaluation of cell binding to collagen and gelatin: a study of the effect of 2D and 3D architecture and surface chemistry. Journal of Materials Science: Materials in Medicine, 27(10). doi:10.1007/s10856-016-5763-9

TAKEICHI, M., & OKADA, T. (1972). Roles of magnesium and calcium ions in cell-to-substrate adhesion. Experimental Cell Research, 74(1), 51-60. doi:10.1016/0014-4827(72)90480-6

Loh, Q. L., & Choong, C. (2013). Three-Dimensional Scaffolds for Tissue Engineering Applications: Role of Porosity and Pore Size. Tissue Engineering Part B: Reviews, 19(6), 485-502. doi:10.1089/ten.teb.2012.0437

Bishi, D. K., Mathapati, S., Venugopal, J. R., Guhathakurta, S., Cherian, K. M., Ramakrishna, S., & Verma, R. S. (2013). Trans-differentiation of human mesenchymal stem cells generates functional hepatospheres on poly(l-lactic acid)-co-poly(ε-caprolactone)/collagen nanofibrous scaffolds. Journal of Materials Chemistry B, 1(32), 3972. doi:10.1039/c3tb20241k

Radhakrishnan, S., Anna Trentz, O., Parthasarathy, V. K., & Sellathamby, S. (2017). Human Adipose Tissue-Derived Stem Cells Differentiate to Neuronal-like Lineage Cells without Specific Induction. Cell Biology: Research & Therapy, 06(01). doi:10.4172/2324-9293.1000131

Nomura, J., Maruyama, M., Katano, M., Kato, H., Zhang, J., Masui, S., … Okuda, A. (2009). Differential Requirement for Nucleostemin in Embryonic Stem Cell and Neural Stem Cell Viability. Stem Cells, 27(5), 1066-1076. doi:10.1002/stem.44

Cai, Q., Gerwin, C., & Sheng, Z.-H. (2005). Syntabulin-mediated anterograde transport of mitochondria along neuronal processes. Journal of Cell Biology, 170(6), 959-969. doi:10.1083/jcb.200506042

Skene, J. H. P., Jacobson, R. D., Snipes, G. J., McGuire, C. B., Norden, J. J., & Freeman, J. A. (1986). A Protein Induced During Nerve Growth (GAP-43) is a Major Component of Growth-Cone Membranes. Science, 233(4765), 783-786. doi:10.1126/science.3738509

Bark, I. C., Hahn, K. M., Ryabinin, A. E., & Wilson, M. C. (1995). Differential expression of SNAP-25 protein isoforms during divergent vesicle fusion events of neural development. Proceedings of the National Academy of Sciences, 92(5), 1510-1514. doi:10.1073/pnas.92.5.1510

Oyler, G. A., Higgins, G. A., Hart, R. A., Battenberg, E., Billingsley, M., Bloom, F. E., & Wilson, M. C. (1989). The identification of a novel synaptosomal-associated protein, SNAP-25, differentially expressed by neuronal subpopulations. Journal of Cell Biology, 109(6), 3039-3052. doi:10.1083/jcb.109.6.3039

Shaw, C. A., Lanius, R. A., & van den Doel, K. (1994). The origin of synaptic neuroplasticity: crucial molecules or a dynamical cascade? Brain Research Reviews, 19(3), 241-263. doi:10.1016/0165-0173(94)90014-0

Lins, L. C., Wianny, F., Livi, S., Hidalgo, I. A., Dehay, C., Duchet-Rumeau, J., & Gérard, J.-F. (2016). Development of Bioresorbable Hydrophilic–Hydrophobic Electrospun Scaffolds for Neural Tissue Engineering. Biomacromolecules, 17(10), 3172-3187. doi:10.1021/acs.biomac.6b00820

A.Samanta , K.Merrett , M.Gerasimov and M.Griffith , Ocular applications of bioresorbable polymers—from basic research to clinical trials, Bioresorbable Polymers for Biomedical Applications: From Fundamentals to Translational Medicine , 2017 , pp. 497–523

Feng, B., Wang, S., Hu, D., Fu, W., Wu, J., Hong, H., … Liu, J. (2019). Bioresorbable electrospun gelatin/polycaprolactone nanofibrous membrane as a barrier to prevent cardiac postoperative adhesion. Acta Biomaterialia, 83, 211-220. doi:10.1016/j.actbio.2018.10.022

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem