- -

Multimodal Hippocampal Subfield Grading For Alzheimer's Disease Classification

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by


  • Estadisticas de Uso

Multimodal Hippocampal Subfield Grading For Alzheimer's Disease Classification

Show full item record

Hett, K.; Ta, V.; Catheline, G.; Tourdias, T.; Manjón Herrera, JV.; Coupé, P.; Alzheimers Disease Neuroimaging Initiative (2019). Multimodal Hippocampal Subfield Grading For Alzheimer's Disease Classification. Scientific Reports. 9:1-16. https://doi.org/10.1038/s41598-019-49970-9

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/160695

Files in this item

Item Metadata

Title: Multimodal Hippocampal Subfield Grading For Alzheimer's Disease Classification
Author: Hett, Kilian Ta, Vinh-Thong Catheline, Gwenaelle Tourdias, Thomas Manjón Herrera, José Vicente Coupé, Pierrick Alzheimers Disease Neuroimaging Initiative
UPV Unit: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Issued date:
[EN] Numerous studies have proposed biomarkers based on magnetic resonance imaging (MRI) to detect and predict the risk of evolution toward Alzheimer's disease (AD). Most of these methods have focused on the hippocampus, ...[+]
Copyrigths: Reconocimiento (by)
Scientific Reports. (issn: 2045-2322 )
DOI: 10.1038/s41598-019-49970-9
Nature Publishing Group
Publisher version: https://doi.org/10.1038/s41598-019-49970-9
Project ID:
info:eu-repo/grantAgreement/ANR//ANR-10-LABX-0057/FR/Translational Research and Advanced Imaging Laboratory/TRAIL/
info:eu-repo/grantAgreement/ANR//ANR-18-CE45-0013/FR/Deep Learning for Volumetric Brain Analysis: Towards BigData in Neuroscience/DeepVolBrain/
This study has been carried out with financial support from the French State, managed by the French National Research Agency (ANR) thanks to the funding of the project DeepvolBrain (ANR-18-CE45-0013) and in the frame of ...[+]
Type: Artículo


Petersen, R. C. et al. Current concepts in mild cognitive impairment. Archives of neurology 58, 1985–1992 (2001).

Aisen, P. S. et al. Clinical core of the Alzheimer’s Disease Neuroimaging Initiative: progress and plans. Alzheimer’s and Dementia 6, 239–246 (2010).

Bron, E. E. et al. Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI: The CADDementia challenge. NeuroImage 111, 562–579 (2015). [+]
Petersen, R. C. et al. Current concepts in mild cognitive impairment. Archives of neurology 58, 1985–1992 (2001).

Aisen, P. S. et al. Clinical core of the Alzheimer’s Disease Neuroimaging Initiative: progress and plans. Alzheimer’s and Dementia 6, 239–246 (2010).

Bron, E. E. et al. Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI: The CADDementia challenge. NeuroImage 111, 562–579 (2015).

Hyman, B. T., Van Hoesen, G. W., Damasio, A. R. & Barnes, C. L. Alzheimer’s disease: cell-specific pathology isolates the hippocampal formation. Science 225, 1168–1170 (1984).

West, M. J., Coleman, P. D., Flood, D. G. & Troncoso, J. C. Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer’s disease. The Lancet 344, 769–772 (1994).

Braak, H. & Braak, E. Staging of Alzheimer’s disease-related neurofibrillary changes. Neurobiology of aging 16, 271–278 (1995).

Gómez-Isla, T. et al. Profound loss of layer ii entorhinal cortex neurons occurs in very mild Alzheimer’s disease. Journal of Neuroscience 16, 4491–4500 (1996).

Du, A. et al. Magnetic resonance imaging of the entorhinal cortex and hippocampus in mild cognitive impairment and Alzheimer’s disease. Journal of Neurology, Neurosurgery & Psychiatry 71, 441–447 (2001).

Coupé, P. et al. Scoring by nonlocal image patch estimator for early detection of Alzheimer’s disease. NeuroImage: clinical 1, 141–152 (2012).

Jack, C. R. et al. Medial temporal atrophy on MRI in normal aging and very mild Alzheimer’s disease. Neurology 49, 786–794 (1997).

Ross, S. et al. Progressive biparietal atrophy: an atypical presentation of Alzheimer’s disease. Journal of Neurology, Neurosurgery & Psychiatry 61, 388–395 (1996).

Kaida, K.-I., Takeda, K., Nagata, N. & Kamakura, K. Alzheimer’s disease with asymmetricx parietal lobe atrophy: a case report. Journal of the neurological sciences 160, 96–99 (1998).

Jack, C. R., Petersen, R. C., O’brien, P. C. & Tangalos, E. G. Mr-based hippocampal volumetry in the diagnosis of Alzheimer’s disease. Neurology 42, 183–183 (1992).

Jack, C. R. et al. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. The Lancet Neurology 9, 119–128 (2010).

Scher, A. et al. Hippocampal shape analysis in Alzheimer’s disease: a population-based study. Neuroimage 36, 8–18 (2007).

Achterberg, H. C. et al. Hippocampal shape is predictive for the development of dementia in a normal, elderly population. Human brain mapping 35, 2359–2371 (2014).

Fischl, B. & Dale, A. M. Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proceedings of the National Academy of Sciences 97, 11050–11055 (2000).

Eskildsen, S. F. et al. Prediction of Alzheimer’s disease in subjects with mild cognitive impairment from the ADNI cohort using patterns of cortical thinning. Neuroimage 65, 511–521 (2013).

Ashburner, J. & Friston, K. J. Voxel-based morphometry—the methods. Neuroimage 11, 805–821 (2000).

Good, C. D. et al. Automatic differentiation of anatomical patterns in the human brain: validation with studies of degenerative dementias. Neuroimage 17, 29–46 (2002).

Karas, G. et al. Global and local gray matter loss in mild cognitive impairment and Alzheimer’s disease. Neuroimage 23, 708–716 (2004).

Hirata, Y. et al. Voxel-based morphometry to discriminate early Alzheimer’s disease from controls. Neuroscience letters 382, 269–274 (2005).

Klöppel, S. et al. Automatic classification of MR scans in Alzheimer’s disease. Brain 131, 681–689 (2008).

Ferreira, L. K., Diniz, B. S., Forlenza, O. V., Busatto, G. F. & Zanetti, M. V. Neurostructural predictors of Alzheimer’s disease: a meta-analysis of VBM studies. Neurobiology of aging 32, 1733–1741 (2011).

Wolz, R. et al. Multi-method analysis of MRI images in early diagnostics of Alzheimer’s disease. PloS one 6, e25446 (2011).

Frisoni, G. B., Fox, N. C., Jack, C. R., Scheltens, P. & Thompson, P. M. The clinical use of structural MRI in Alzheimer disease. Nature Reviews Neurology 6, 67–77 (2010).

Hill, D. L. et al. Coalition against major diseases/european medicines agency biomarker qualification of hippocampal volume for enrichment of clinical trials in predementia stages of Alzheimer’s disease. Alzheimer’s & Dementia 10, 421–429 (2014).

Gerardin, E. et al. Multidimensional classification of hippocampal shape features discriminates Alzheimer’s disease and mild cognitive impairment from normal aging. Neuroimage 47, 1476–1486 (2009).

Tong, T. et al. Multiple instance learning for classification of dementia in brain MRI. Medical image analysis 18, 808–818 (2014).

Sørensen, L. et al. Differential diagnosis of mild cognitive impairment and Alzheimer’s disease using structural MRI cortical thickness, hippocampal shape, hippocampal texture, and volumetry. NeuroImage: Clinical (2016).

Liu, M., Zhang, D., Shen, D. & Alzheimer’s Disease Neuroimaging Initiative. Ensemble sparse classification of Alzheimer’s disease. NeuroImage 60, 1106–1116 (2012).

Coupé, P. et al. Detection of Alzheimer’s disease signature in MR images seven years before conversion to dementia: Toward an early individual prognosis. Human brain mapping 36, 4758–4770 (2015).

Koikkalainen, J. et al. Differential diagnosis of neurodegenerative diseases using structural MRI data. NeuroImage: Clinical 11, 435–449 (2016).

Tong, T. et al. Five-class differential diagnostics of neurodegenerative diseases using random undersampling boosting. NeuroImage: Clinical 15, 613–624 (2017).

Lorente de Nó, R. Studies on the structure of the cerebral cortex. ii. continuation of the study of the ammonic system. Journal für Psychologie und Neurologie (1934).

Yushkevich, P. A. et al. Quantitative comparison of 21 protocols for labeling hippocampal subfields and parahippocampal subregions in in vivo MRI: towards a harmonized segmentation protocol. Neuroimage 111, 526–541 (2015).

Winterburn, J. L. et al. A novel in vivo atlas of human hippocampal subfields using high-resolution 3T magnetic resonance imaging. Neuroimage 74, 254–265 (2013).

Hasselmo, M. E. The role of hippocampal regions CA3 and CA1 in matching entorhinal input with retrieval of associations between objects and context: theoretical comment on Lee et al. (2005). Behavioral Neuroscience 119, 342–345 (2005).

Acsády, L. & Káli, S. Models, structure, function: the transformation of cortical signals in the dentate gyrus. Progress in brain research 163, 577–599 (2007).

Wan, H., Aggleton, J. P. & Brown, M. W. Different contributions of the hippocampus and perirhinal cortex to recognition memory. Journal of Neuroscience 19, 1142–1148 (1999).

Nakazawa, K., McHugh, T. J., Wilson, M. A. & Tonegawa, S. Nmda receptors, place cells and hippocampal spatial memory. Nature Reviews Neuroscience 5, 361 (2004).

Hunsaker, M. R. & Kesner, R. P. Evaluating the differential roles of the dorsal dentate gyrus, dorsal ca3, and dorsal ca1 during a temporal ordering for spatial locations task. Hippocampus 18, 955–964 (2008).

Braak, E. & Braak, H. Alzheimer’s disease: transiently developing dendritic changes in pyramidal cells of sector CA1 of the ammon’s horn. Acta neuropathologica 93, 323–325 (1997).

Braak, H., Alafuzoff, I., Arzberger, T., Kretzschmar, H. & Del Tredici, K. Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta neuropathologica 112, 389–404 (2006).

Apostolova, L. G. et al. Conversion of mild cognitive impairment to Alzheimer disease predicted by hippocampal atrophy maps. Archives of neurology 63, 693–699 (2006).

La Joie, R. et al. Hippocampal subfield volumetry in mild cognitive impairment, Alzheimer’s disease and semantic dementia. NeuroImage: Clinical 3, 155–162 (2013).

Kerchner, G. et al. Hippocampal CA1 apical neuropil atrophy in mild Alzheimer disease visualized with 7-T MRI. Neurology 75, 1381–1387 (2010).

Kerchner, G. A. et al. Hippocampal CA1 apical neuropil atrophy and memory performance in Alzheimer’s disease. Neuroimage 63, 194–202 (2012).

Trujillo-Estrada, L. et al. Early neuronal loss and axonal/presynaptic damage is associated with accelerated amyloid-β accumulation in aβpp/ps1 Alzheimer’s disease mice subiculum. Journal of Alzheimer’s Disease 42, 521–541 (2014).

Li, Y.-D., Dong, H.-B., Xie, G.-M. & Zhang, L.-J. Discriminative analysis of mild Alzheimer’s disease and normal aging using volume of hippocampal subfields and hippocampal mean diffusivity: an in vivo magnetic resonance imaging study. American Journal of Alzheimer’s Disease & Other Dementias 28, 627–633 (2013).

Aggleton, J. P. & Christiansen, K. The subiculum: the heart of the extended hippocampal system. In Progress in brain research, vol. 219, 65–82 (Elsevier, 2015).

O’Dwyer, L. et al. Using support vector machines with multiple indices of diffusion for automated classification of mild cognitive impairment. PloS one 7, e32441 (2012).

Dyrba, M. et al. Robust automated detection of microstructural white matter degeneration in Alzheimer’s disease using machine learning classification of multicenter DTI data. PloS one 8, e64925 (2013).

Dyrba, M. et al. Predicting prodromal Alzheimer’s disease in subjects with mild cognitive impairment using machine learning classification of multimodal multicenter diffusion-tensor and magnetic resonance imaging data. Journal of Neuroimaging 25, 738–747 (2015).

Nir, T. M. et al. Effectiveness of regional DTI measures in distinguishing Alzheimer’s disease, MCI, and normal aging. NeuroImage: clinical 3, 180–195 (2013).

Wang, Z. et al. Interhemispheric functional and structural disconnection in Alzheimer’s disease: a combined resting-state fMRI and DTI study. PLoS One 10, e0126310 (2015).

Liu, Y. et al. Diffusion tensor imaging and tract-based spatial statistics in Alzheimer’s disease and mild cognitive impairment. Neurobiology of aging 32, 1558–1571 (2011).

Rose, S. E., Andrew, L. & Chalk, J. B. Gray and white matter changes in Alzheimer’s disease: a diffusion tensor imaging study. Journal of Magnetic Resonance Imaging 27, 20–26 (2008).

Wee, C.-Y. et al. Identification of MCI individuals using structural and functional connectivity networks. Neuroimage 59, 2045–2056 (2012).

Prasad, G. et al. Brain connectivity and novel network measures for Alzheimer’s disease classification. Neurobiology of aging 36, S121–S131 (2015).

Fellgiebel, A. & Yakushev, I. Diffusion tensor imaging of the hippocampus in MCI and early Alzheimer’s disease. Journal of Alzheimer’s Disease 26, 257–262 (2011).

Kantarci, K. et al. DWI predicts future progression to Alzheimer disease in amnestic mild cognitive impairment. Neurology 64, 902–904 (2005).

Müller, M. J. et al. Functional implications of hippocampal volume and diffusivity in mild cognitive impairment. Neuroimage 28, 1033–1042 (2005).

Fellgiebel, A. et al. Predicting conversion to dementia in mild cognitive impairment by volumetric and diffusivity measurements of the hippocampus. Psychiatry Research: Neuroimaging 146, 283–287 (2006).

Hett, K. et al. Patch-based DTI grading: Application to Alzheimer’s disease classification. In International Workshop on Patch-based Techniques in Medical Imaging, 76–83 (Springer, 2016).

Mak, E. et al. Multi-modal MRI investigation of volumetric and microstructural changes in the hippocampus and its subfields in mild cognitive impairment, Alzheimer’s disease, and dementia with Lewy bodies. International psychogeriatrics 29, 545–555 (2017).

Clerx, L., Visser, P. J., Verhey, F. & Aalten, P. New MRI markers for alzheimer’s disease: a meta-analysis of diffusion tensor imaging and a comparison with medial temporal lobe measurements. Journal of Alzheimer’s Disease 29, 405–429 (2012).

Cui, Y. et al. Automated detection of amnestic mild cognitive impairment in community-dwelling elderly adults: a combined spatial atrophy and white matter alteration approach. Neuroimage 59, 1209–1217 (2012).

Li, M., Qin, Y., Gao, F., Zhu, W. & He, X. Discriminative analysis of multivariate features from structural mri and diffusion tensor images. Magnetic resonance imaging 32, 1043–1051 (2014).

Jack, C. R. et al. The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. Journal of magnetic resonance imaging 27, 685–691 (2008).

Jahanshad, N. et al. Diffusion tensor imaging in seven minutes: determining trade-offs between spatial and directional resolution. In Biomedical Imaging: From Nano to Macro, 2010 IEEE International Symposium on, 1161–1164 (IEEE, 2010).

Manjón, J. V. & Coupé, P. volbrain: An online MRI brain volumetry system. Frontiers in neuroinformatics 10 (2016).

Manjón, J. V., Coupé, P., Mart-Bonmat, L., Collins, D. L. & Robles, M. Adaptive non-local means denoising of MR images with spatially varying noise levels. Journal of Magnetic Resonance Imaging 31, 192–203 (2010).

Avants, B. B. et al. A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage 54, 2033–2044 (2011).

Tustison, N. J. et al. N4ITK: improved N3 bias correction. IEEE transactions on medical imaging 29, 1310–1320 (2010).

Romero, J. E., Coupe, P. & Manjon, J. V. Hips: A new hippocampus subfield segmentation method. NeuroImage 163, 286–295 (2017).

Romero, J. E., Coupé, P. & Manjón, J. V. High resolution hippocampus subfield segmentation using multispectral multiatlas patch-based label fusion. In International Workshop on Patch-based Techniques in Medical Imaging, 117–124 (Springer, 2016).

Coupé, P., Manjón, J. V., Chamberland, M., Descoteaux, M. & Hiba, B. Collaborative patch-based super-resolution for diffusion-weighted images. NeuroImage 83, 245–261 (2013).

Manjón, J. et al. Nice: non-local intracranial cavity extraction. International Journal of Biomedical Imaging (2014).

Manjón, J. V. et al. Diffusion weighted image denoising using overcomplete local pca. PloS one 8, e73021 (2013).

Basser, P. J., Mattiello, J. & LeBihan, D. Mr diffusion tensor spectroscopy and imaging. Biophysical journal 66, 259–267 (1994).

Garyfallidis, E. et al. Dipy, a library for the analysis of diffusion MRI data. Frontiers in neuroinformatics 8, 8 (2014).

Dyrby, T. B. et al. Interpolation of diffusion weighted imaging datasets. NeuroImage 103, 202–213 (2014).

Tong, T. et al. A novel grading biomarker for the prediction of conversion from mild cognitive impairment to Alzheimer’s disease. IEEE Transactions on Biomedical Engineering 64, 155–165 (2017).

Barnes, C., Shechtman, E., Finkelstein, A. & Goldman, D. Patchmatch: A randomized correspondence algorithm for structural image editing. ACM Transactions on Graphics-TOG 28, 24 (2009).

Sutour, C., Deledalle, C.-A. & Aujol, J.-F. Adaptive regularization of the NL-means: Application to image and video denoising. IEEE Transactions on image processing 23, 3506–3521 (2014).

Whitwell, J. L., Crum, W. R., Watt, H. C. & Fox, N. C. Normalization of cerebral volumes by use of intracranial volume: implications for longitudinal quantitative MR imaging. American Journal of Neuroradiology 22, 1483–1489 (2001).

Dukart, J., Schroeter, M. L. & Mueller, K., Alzheimer’s Disease Neuroimaging Initiative. Age correction in dementia–matching to a healthy brain. PloS one 6, e22193 (2011).

Giraud, R. et al. An optimized patchmatch for multi-scale and multi-feature label fusion. NeuroImage 124, 770–782 (2016).

Zweig, M. H. & Campbell, G. Receiver-operating characteristic (roc) plots: a fundamental evaluation tool in clinical medicine. Clinical chemistry 39, 561–577 (1993).

Hochberg, Y. & Tamhane, A. Multiple comparison procedures (John Wiley, 1987).

Hett, K. et al. Adaptive fusion of texture-based grading for alzheimer’s disease classification. Computerized Medical Imaging and Graphics 70, 8–16 (2018).

Nir, T. M. et al. Diffusion weighted imaging-based maximum density path analysis and classification of alzheimer’s disease. Neurobiology of aging 36, S132–S140 (2015).

Zhan, L., Liu, Y., Zhou, J., Ye, J. & Thompson, P. M. Boosting classification accuracy of diffusion MRI derived brain networks for the subtypes of mild cognitive impairment using higher order singular value decomposition. In Biomedical Imaging (ISBI), 2015 IEEE 12th International Symposium on Biomedical Imaging, 131–135 (IEEE, 2015).

La Rocca, M., Amoroso, N., Monaco, A., Bellotti, R. & Tangaro, S. A novel approach to brain connectivity reveals early structural changes in alzheimer’s disease. Physiological Measurement (2018).

Maggipinto, T. et al. Dti measurements for alzheimer’s classification. Physics in Medicine and Biology 62, 2361 (2017).

Khan, W. et al. Automated hippocampal subfield measures as predictors of conversion from mild cognitive impairment to alzheimer’s disease in two independent cohorts. Brain topography 28, 746–759 (2015).

Thal, D. R. et al. Alzheimer-related τ-pathology in the perforant path target zone and in the hippocampal stratum oriens and radiatum correlates with onset and degree of dementia. Experimental neurology 163, 98–110 (2000).

Mueller, S. et al. Measurement of hippocampal subfields and age-related changes with high resolution MRI at 4T. Neurobiology of aging 28, 719–726 (2007).

Carlesimo, G. A. et al. Atrophy of presubiculum and subiculum is the earliest hippocampal anatomical marker of Alzheimer’s disease. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring 1, 24–32 (2015).

Oishi, K. et al. Multi-modal MRI analysis with disease-specific spatial filtering: initial testing to predict mild cognitive impairment patients who convert to alzheimer’s disease. Frontiers in neurology 2, 54 (2011).

Arbabshirani, M. R., Plis, S., Sui, J. & Calhoun, V. D. Single subject prediction of brain disorders in neuroimaging: Promises and pitfalls. NeuroImage 145, 137–165 (2017).




This item appears in the following Collection(s)

Show full item record