- -

Multimodal Hippocampal Subfield Grading For Alzheimer's Disease Classification

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Multimodal Hippocampal Subfield Grading For Alzheimer's Disease Classification

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Hett, Kilian es_ES
dc.contributor.author Ta, Vinh-Thong es_ES
dc.contributor.author Catheline, Gwenaelle es_ES
dc.contributor.author Tourdias, Thomas es_ES
dc.contributor.author Manjón Herrera, José Vicente es_ES
dc.contributor.author Coupé, Pierrick es_ES
dc.contributor.author Alzheimers Disease Neuroimaging Initiative es_ES
dc.date.accessioned 2021-02-04T04:32:34Z
dc.date.available 2021-02-04T04:32:34Z
dc.date.issued 2019-09-25 es_ES
dc.identifier.issn 2045-2322 es_ES
dc.identifier.uri http://hdl.handle.net/10251/160695
dc.description.abstract [EN] Numerous studies have proposed biomarkers based on magnetic resonance imaging (MRI) to detect and predict the risk of evolution toward Alzheimer's disease (AD). Most of these methods have focused on the hippocampus, which is known to be one of the earliest structures impacted by the disease. To date, patch-based grading approaches provide among the best biomarkers based on the hippocampus. However, this structure is complex and is divided into different subfields, not equally impacted by AD. Former in-vivo imaging studies mainly investigated structural alterations of these subfields using volumetric measurements and microstructural modifications with mean diffusivity measurements. The aim of our work is to improve the current classification performances based on the hippocampus with a new multimodal patch-based framework combining structural and diffusivity MRI. The combination of these two MRI modalities enables the capture of subtle structural and microstructural alterations. Moreover, we propose to study the efficiency of this new framework applied to the hippocampal subfields. To this end, we compare the classification accuracy provided by the different hippocampal subfields using volume, mean diffusivity, and our novel multimodal patch-based grading framework combining structural and diffusion MRI. The experiments conducted in this work show that our new multimodal patch-based method applied to the whole hippocampus provides the most discriminating biomarker for advanced AD detection while our new framework applied into subiculum obtains the best results for AD prediction, improving by two percentage points the accuracy compared to the whole hippocampus. es_ES
dc.description.sponsorship This study has been carried out with financial support from the French State, managed by the French National Research Agency (ANR) thanks to the funding of the project DeepvolBrain (ANR-18-CE45-0013) and in the frame of the Investments for the future Program IdEx Bordeaux, Cluster of excellence CPU and labex TRAIL (BigDataBrain ANR-10-LABX-57). The study presented in this work is a part of the thesis entitled "Multi-scale and multimodal imaging biomarkers for the early detection of Alzheimer's disease" defended by the same author. Data collection and sharing for this project was funded by the Alzheimer's Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer's Biogen; Bristol-Myes Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffman-La Roche Ltd. and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Pharmaceutical Research & Development LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org).The grantee organization is the Northern California Institute of Research and Education, and the study is coordinated by the Alzheimer's Therapeutic Research Institute at the University of Southern California. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California. es_ES
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Scientific Reports es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Multimodal Hippocampal Subfield Grading For Alzheimer's Disease Classification es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/s41598-019-49970-9 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ANR//ANR-10-LABX-0057/FR/Translational Research and Advanced Imaging Laboratory/TRAIL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ANR//ANR-18-CE45-0013/FR/Deep Learning for Volumetric Brain Analysis: Towards BigData in Neuroscience/DeepVolBrain/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NIH//U01AG024904/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Hett, K.; Ta, V.; Catheline, G.; Tourdias, T.; Manjón Herrera, JV.; Coupé, P.; Alzheimers Disease Neuroimaging Initiative (2019). Multimodal Hippocampal Subfield Grading For Alzheimer's Disease Classification. Scientific Reports. 9:1-16. https://doi.org/10.1038/s41598-019-49970-9 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1038/s41598-019-49970-9 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 16 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.identifier.pmid 31554909 es_ES
dc.identifier.pmcid PMC6761169 es_ES
dc.relation.pasarela S\403813 es_ES
dc.contributor.funder Pfizer es_ES
dc.contributor.funder National Institute on Aging, EEUU es_ES
dc.contributor.funder National Institutes of Health, EEUU es_ES
dc.contributor.funder Agence Nationale de la Recherche, Francia es_ES
dc.contributor.funder National Institute of Neurological Disorders and Stroke, EEUU es_ES
dc.contributor.funder National Institute of Biomedical Imaging and Bioengineering, EEUU es_ES
dc.description.references Petersen, R. C. et al. Current concepts in mild cognitive impairment. Archives of neurology 58, 1985–1992 (2001). es_ES
dc.description.references Aisen, P. S. et al. Clinical core of the Alzheimer’s Disease Neuroimaging Initiative: progress and plans. Alzheimer’s and Dementia 6, 239–246 (2010). es_ES
dc.description.references Bron, E. E. et al. Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI: The CADDementia challenge. NeuroImage 111, 562–579 (2015). es_ES
dc.description.references Hyman, B. T., Van Hoesen, G. W., Damasio, A. R. & Barnes, C. L. Alzheimer’s disease: cell-specific pathology isolates the hippocampal formation. Science 225, 1168–1170 (1984). es_ES
dc.description.references West, M. J., Coleman, P. D., Flood, D. G. & Troncoso, J. C. Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer’s disease. The Lancet 344, 769–772 (1994). es_ES
dc.description.references Braak, H. & Braak, E. Staging of Alzheimer’s disease-related neurofibrillary changes. Neurobiology of aging 16, 271–278 (1995). es_ES
dc.description.references Gómez-Isla, T. et al. Profound loss of layer ii entorhinal cortex neurons occurs in very mild Alzheimer’s disease. Journal of Neuroscience 16, 4491–4500 (1996). es_ES
dc.description.references Du, A. et al. Magnetic resonance imaging of the entorhinal cortex and hippocampus in mild cognitive impairment and Alzheimer’s disease. Journal of Neurology, Neurosurgery & Psychiatry 71, 441–447 (2001). es_ES
dc.description.references Coupé, P. et al. Scoring by nonlocal image patch estimator for early detection of Alzheimer’s disease. NeuroImage: clinical 1, 141–152 (2012). es_ES
dc.description.references Jack, C. R. et al. Medial temporal atrophy on MRI in normal aging and very mild Alzheimer’s disease. Neurology 49, 786–794 (1997). es_ES
dc.description.references Ross, S. et al. Progressive biparietal atrophy: an atypical presentation of Alzheimer’s disease. Journal of Neurology, Neurosurgery & Psychiatry 61, 388–395 (1996). es_ES
dc.description.references Kaida, K.-I., Takeda, K., Nagata, N. & Kamakura, K. Alzheimer’s disease with asymmetricx parietal lobe atrophy: a case report. Journal of the neurological sciences 160, 96–99 (1998). es_ES
dc.description.references Jack, C. R., Petersen, R. C., O’brien, P. C. & Tangalos, E. G. Mr-based hippocampal volumetry in the diagnosis of Alzheimer’s disease. Neurology 42, 183–183 (1992). es_ES
dc.description.references Jack, C. R. et al. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. The Lancet Neurology 9, 119–128 (2010). es_ES
dc.description.references Scher, A. et al. Hippocampal shape analysis in Alzheimer’s disease: a population-based study. Neuroimage 36, 8–18 (2007). es_ES
dc.description.references Achterberg, H. C. et al. Hippocampal shape is predictive for the development of dementia in a normal, elderly population. Human brain mapping 35, 2359–2371 (2014). es_ES
dc.description.references Fischl, B. & Dale, A. M. Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proceedings of the National Academy of Sciences 97, 11050–11055 (2000). es_ES
dc.description.references Eskildsen, S. F. et al. Prediction of Alzheimer’s disease in subjects with mild cognitive impairment from the ADNI cohort using patterns of cortical thinning. Neuroimage 65, 511–521 (2013). es_ES
dc.description.references Ashburner, J. & Friston, K. J. Voxel-based morphometry—the methods. Neuroimage 11, 805–821 (2000). es_ES
dc.description.references Good, C. D. et al. Automatic differentiation of anatomical patterns in the human brain: validation with studies of degenerative dementias. Neuroimage 17, 29–46 (2002). es_ES
dc.description.references Karas, G. et al. Global and local gray matter loss in mild cognitive impairment and Alzheimer’s disease. Neuroimage 23, 708–716 (2004). es_ES
dc.description.references Hirata, Y. et al. Voxel-based morphometry to discriminate early Alzheimer’s disease from controls. Neuroscience letters 382, 269–274 (2005). es_ES
dc.description.references Klöppel, S. et al. Automatic classification of MR scans in Alzheimer’s disease. Brain 131, 681–689 (2008). es_ES
dc.description.references Ferreira, L. K., Diniz, B. S., Forlenza, O. V., Busatto, G. F. & Zanetti, M. V. Neurostructural predictors of Alzheimer’s disease: a meta-analysis of VBM studies. Neurobiology of aging 32, 1733–1741 (2011). es_ES
dc.description.references Wolz, R. et al. Multi-method analysis of MRI images in early diagnostics of Alzheimer’s disease. PloS one 6, e25446 (2011). es_ES
dc.description.references Frisoni, G. B., Fox, N. C., Jack, C. R., Scheltens, P. & Thompson, P. M. The clinical use of structural MRI in Alzheimer disease. Nature Reviews Neurology 6, 67–77 (2010). es_ES
dc.description.references Hill, D. L. et al. Coalition against major diseases/european medicines agency biomarker qualification of hippocampal volume for enrichment of clinical trials in predementia stages of Alzheimer’s disease. Alzheimer’s & Dementia 10, 421–429 (2014). es_ES
dc.description.references Gerardin, E. et al. Multidimensional classification of hippocampal shape features discriminates Alzheimer’s disease and mild cognitive impairment from normal aging. Neuroimage 47, 1476–1486 (2009). es_ES
dc.description.references Tong, T. et al. Multiple instance learning for classification of dementia in brain MRI. Medical image analysis 18, 808–818 (2014). es_ES
dc.description.references Sørensen, L. et al. Differential diagnosis of mild cognitive impairment and Alzheimer’s disease using structural MRI cortical thickness, hippocampal shape, hippocampal texture, and volumetry. NeuroImage: Clinical (2016). es_ES
dc.description.references Liu, M., Zhang, D., Shen, D. & Alzheimer’s Disease Neuroimaging Initiative. Ensemble sparse classification of Alzheimer’s disease. NeuroImage 60, 1106–1116 (2012). es_ES
dc.description.references Coupé, P. et al. Detection of Alzheimer’s disease signature in MR images seven years before conversion to dementia: Toward an early individual prognosis. Human brain mapping 36, 4758–4770 (2015). es_ES
dc.description.references Koikkalainen, J. et al. Differential diagnosis of neurodegenerative diseases using structural MRI data. NeuroImage: Clinical 11, 435–449 (2016). es_ES
dc.description.references Tong, T. et al. Five-class differential diagnostics of neurodegenerative diseases using random undersampling boosting. NeuroImage: Clinical 15, 613–624 (2017). es_ES
dc.description.references Lorente de Nó, R. Studies on the structure of the cerebral cortex. ii. continuation of the study of the ammonic system. Journal für Psychologie und Neurologie (1934). es_ES
dc.description.references Yushkevich, P. A. et al. Quantitative comparison of 21 protocols for labeling hippocampal subfields and parahippocampal subregions in in vivo MRI: towards a harmonized segmentation protocol. Neuroimage 111, 526–541 (2015). es_ES
dc.description.references Winterburn, J. L. et al. A novel in vivo atlas of human hippocampal subfields using high-resolution 3T magnetic resonance imaging. Neuroimage 74, 254–265 (2013). es_ES
dc.description.references Hasselmo, M. E. The role of hippocampal regions CA3 and CA1 in matching entorhinal input with retrieval of associations between objects and context: theoretical comment on Lee et al. (2005). Behavioral Neuroscience 119, 342–345 (2005). es_ES
dc.description.references Acsády, L. & Káli, S. Models, structure, function: the transformation of cortical signals in the dentate gyrus. Progress in brain research 163, 577–599 (2007). es_ES
dc.description.references Wan, H., Aggleton, J. P. & Brown, M. W. Different contributions of the hippocampus and perirhinal cortex to recognition memory. Journal of Neuroscience 19, 1142–1148 (1999). es_ES
dc.description.references Nakazawa, K., McHugh, T. J., Wilson, M. A. & Tonegawa, S. Nmda receptors, place cells and hippocampal spatial memory. Nature Reviews Neuroscience 5, 361 (2004). es_ES
dc.description.references Hunsaker, M. R. & Kesner, R. P. Evaluating the differential roles of the dorsal dentate gyrus, dorsal ca3, and dorsal ca1 during a temporal ordering for spatial locations task. Hippocampus 18, 955–964 (2008). es_ES
dc.description.references Braak, E. & Braak, H. Alzheimer’s disease: transiently developing dendritic changes in pyramidal cells of sector CA1 of the ammon’s horn. Acta neuropathologica 93, 323–325 (1997). es_ES
dc.description.references Braak, H., Alafuzoff, I., Arzberger, T., Kretzschmar, H. & Del Tredici, K. Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta neuropathologica 112, 389–404 (2006). es_ES
dc.description.references Apostolova, L. G. et al. Conversion of mild cognitive impairment to Alzheimer disease predicted by hippocampal atrophy maps. Archives of neurology 63, 693–699 (2006). es_ES
dc.description.references La Joie, R. et al. Hippocampal subfield volumetry in mild cognitive impairment, Alzheimer’s disease and semantic dementia. NeuroImage: Clinical 3, 155–162 (2013). es_ES
dc.description.references Kerchner, G. et al. Hippocampal CA1 apical neuropil atrophy in mild Alzheimer disease visualized with 7-T MRI. Neurology 75, 1381–1387 (2010). es_ES
dc.description.references Kerchner, G. A. et al. Hippocampal CA1 apical neuropil atrophy and memory performance in Alzheimer’s disease. Neuroimage 63, 194–202 (2012). es_ES
dc.description.references Trujillo-Estrada, L. et al. Early neuronal loss and axonal/presynaptic damage is associated with accelerated amyloid-β accumulation in aβpp/ps1 Alzheimer’s disease mice subiculum. Journal of Alzheimer’s Disease 42, 521–541 (2014). es_ES
dc.description.references Li, Y.-D., Dong, H.-B., Xie, G.-M. & Zhang, L.-J. Discriminative analysis of mild Alzheimer’s disease and normal aging using volume of hippocampal subfields and hippocampal mean diffusivity: an in vivo magnetic resonance imaging study. American Journal of Alzheimer’s Disease & Other Dementias 28, 627–633 (2013). es_ES
dc.description.references Aggleton, J. P. & Christiansen, K. The subiculum: the heart of the extended hippocampal system. In Progress in brain research, vol. 219, 65–82 (Elsevier, 2015). es_ES
dc.description.references O’Dwyer, L. et al. Using support vector machines with multiple indices of diffusion for automated classification of mild cognitive impairment. PloS one 7, e32441 (2012). es_ES
dc.description.references Dyrba, M. et al. Robust automated detection of microstructural white matter degeneration in Alzheimer’s disease using machine learning classification of multicenter DTI data. PloS one 8, e64925 (2013). es_ES
dc.description.references Dyrba, M. et al. Predicting prodromal Alzheimer’s disease in subjects with mild cognitive impairment using machine learning classification of multimodal multicenter diffusion-tensor and magnetic resonance imaging data. Journal of Neuroimaging 25, 738–747 (2015). es_ES
dc.description.references Nir, T. M. et al. Effectiveness of regional DTI measures in distinguishing Alzheimer’s disease, MCI, and normal aging. NeuroImage: clinical 3, 180–195 (2013). es_ES
dc.description.references Wang, Z. et al. Interhemispheric functional and structural disconnection in Alzheimer’s disease: a combined resting-state fMRI and DTI study. PLoS One 10, e0126310 (2015). es_ES
dc.description.references Liu, Y. et al. Diffusion tensor imaging and tract-based spatial statistics in Alzheimer’s disease and mild cognitive impairment. Neurobiology of aging 32, 1558–1571 (2011). es_ES
dc.description.references Rose, S. E., Andrew, L. & Chalk, J. B. Gray and white matter changes in Alzheimer’s disease: a diffusion tensor imaging study. Journal of Magnetic Resonance Imaging 27, 20–26 (2008). es_ES
dc.description.references Wee, C.-Y. et al. Identification of MCI individuals using structural and functional connectivity networks. Neuroimage 59, 2045–2056 (2012). es_ES
dc.description.references Prasad, G. et al. Brain connectivity and novel network measures for Alzheimer’s disease classification. Neurobiology of aging 36, S121–S131 (2015). es_ES
dc.description.references Fellgiebel, A. & Yakushev, I. Diffusion tensor imaging of the hippocampus in MCI and early Alzheimer’s disease. Journal of Alzheimer’s Disease 26, 257–262 (2011). es_ES
dc.description.references Kantarci, K. et al. DWI predicts future progression to Alzheimer disease in amnestic mild cognitive impairment. Neurology 64, 902–904 (2005). es_ES
dc.description.references Müller, M. J. et al. Functional implications of hippocampal volume and diffusivity in mild cognitive impairment. Neuroimage 28, 1033–1042 (2005). es_ES
dc.description.references Fellgiebel, A. et al. Predicting conversion to dementia in mild cognitive impairment by volumetric and diffusivity measurements of the hippocampus. Psychiatry Research: Neuroimaging 146, 283–287 (2006). es_ES
dc.description.references Hett, K. et al. Patch-based DTI grading: Application to Alzheimer’s disease classification. In International Workshop on Patch-based Techniques in Medical Imaging, 76–83 (Springer, 2016). es_ES
dc.description.references Mak, E. et al. Multi-modal MRI investigation of volumetric and microstructural changes in the hippocampus and its subfields in mild cognitive impairment, Alzheimer’s disease, and dementia with Lewy bodies. International psychogeriatrics 29, 545–555 (2017). es_ES
dc.description.references Clerx, L., Visser, P. J., Verhey, F. & Aalten, P. New MRI markers for alzheimer’s disease: a meta-analysis of diffusion tensor imaging and a comparison with medial temporal lobe measurements. Journal of Alzheimer’s Disease 29, 405–429 (2012). es_ES
dc.description.references Cui, Y. et al. Automated detection of amnestic mild cognitive impairment in community-dwelling elderly adults: a combined spatial atrophy and white matter alteration approach. Neuroimage 59, 1209–1217 (2012). es_ES
dc.description.references Li, M., Qin, Y., Gao, F., Zhu, W. & He, X. Discriminative analysis of multivariate features from structural mri and diffusion tensor images. Magnetic resonance imaging 32, 1043–1051 (2014). es_ES
dc.description.references Jack, C. R. et al. The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. Journal of magnetic resonance imaging 27, 685–691 (2008). es_ES
dc.description.references Jahanshad, N. et al. Diffusion tensor imaging in seven minutes: determining trade-offs between spatial and directional resolution. In Biomedical Imaging: From Nano to Macro, 2010 IEEE International Symposium on, 1161–1164 (IEEE, 2010). es_ES
dc.description.references Manjón, J. V. & Coupé, P. volbrain: An online MRI brain volumetry system. Frontiers in neuroinformatics 10 (2016). es_ES
dc.description.references Manjón, J. V., Coupé, P., Mart-Bonmat, L., Collins, D. L. & Robles, M. Adaptive non-local means denoising of MR images with spatially varying noise levels. Journal of Magnetic Resonance Imaging 31, 192–203 (2010). es_ES
dc.description.references Avants, B. B. et al. A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage 54, 2033–2044 (2011). es_ES
dc.description.references Tustison, N. J. et al. N4ITK: improved N3 bias correction. IEEE transactions on medical imaging 29, 1310–1320 (2010). es_ES
dc.description.references Romero, J. E., Coupe, P. & Manjon, J. V. Hips: A new hippocampus subfield segmentation method. NeuroImage 163, 286–295 (2017). es_ES
dc.description.references Romero, J. E., Coupé, P. & Manjón, J. V. High resolution hippocampus subfield segmentation using multispectral multiatlas patch-based label fusion. In International Workshop on Patch-based Techniques in Medical Imaging, 117–124 (Springer, 2016). es_ES
dc.description.references Coupé, P., Manjón, J. V., Chamberland, M., Descoteaux, M. & Hiba, B. Collaborative patch-based super-resolution for diffusion-weighted images. NeuroImage 83, 245–261 (2013). es_ES
dc.description.references Manjón, J. et al. Nice: non-local intracranial cavity extraction. International Journal of Biomedical Imaging (2014). es_ES
dc.description.references Manjón, J. V. et al. Diffusion weighted image denoising using overcomplete local pca. PloS one 8, e73021 (2013). es_ES
dc.description.references Basser, P. J., Mattiello, J. & LeBihan, D. Mr diffusion tensor spectroscopy and imaging. Biophysical journal 66, 259–267 (1994). es_ES
dc.description.references Garyfallidis, E. et al. Dipy, a library for the analysis of diffusion MRI data. Frontiers in neuroinformatics 8, 8 (2014). es_ES
dc.description.references Dyrby, T. B. et al. Interpolation of diffusion weighted imaging datasets. NeuroImage 103, 202–213 (2014). es_ES
dc.description.references Tong, T. et al. A novel grading biomarker for the prediction of conversion from mild cognitive impairment to Alzheimer’s disease. IEEE Transactions on Biomedical Engineering 64, 155–165 (2017). es_ES
dc.description.references Barnes, C., Shechtman, E., Finkelstein, A. & Goldman, D. Patchmatch: A randomized correspondence algorithm for structural image editing. ACM Transactions on Graphics-TOG 28, 24 (2009). es_ES
dc.description.references Sutour, C., Deledalle, C.-A. & Aujol, J.-F. Adaptive regularization of the NL-means: Application to image and video denoising. IEEE Transactions on image processing 23, 3506–3521 (2014). es_ES
dc.description.references Whitwell, J. L., Crum, W. R., Watt, H. C. & Fox, N. C. Normalization of cerebral volumes by use of intracranial volume: implications for longitudinal quantitative MR imaging. American Journal of Neuroradiology 22, 1483–1489 (2001). es_ES
dc.description.references Dukart, J., Schroeter, M. L. & Mueller, K., Alzheimer’s Disease Neuroimaging Initiative. Age correction in dementia–matching to a healthy brain. PloS one 6, e22193 (2011). es_ES
dc.description.references Giraud, R. et al. An optimized patchmatch for multi-scale and multi-feature label fusion. NeuroImage 124, 770–782 (2016). es_ES
dc.description.references Zweig, M. H. & Campbell, G. Receiver-operating characteristic (roc) plots: a fundamental evaluation tool in clinical medicine. Clinical chemistry 39, 561–577 (1993). es_ES
dc.description.references Hochberg, Y. & Tamhane, A. Multiple comparison procedures (John Wiley, 1987). es_ES
dc.description.references Hett, K. et al. Adaptive fusion of texture-based grading for alzheimer’s disease classification. Computerized Medical Imaging and Graphics 70, 8–16 (2018). es_ES
dc.description.references Nir, T. M. et al. Diffusion weighted imaging-based maximum density path analysis and classification of alzheimer’s disease. Neurobiology of aging 36, S132–S140 (2015). es_ES
dc.description.references Zhan, L., Liu, Y., Zhou, J., Ye, J. & Thompson, P. M. Boosting classification accuracy of diffusion MRI derived brain networks for the subtypes of mild cognitive impairment using higher order singular value decomposition. In Biomedical Imaging (ISBI), 2015 IEEE 12th International Symposium on Biomedical Imaging, 131–135 (IEEE, 2015). es_ES
dc.description.references La Rocca, M., Amoroso, N., Monaco, A., Bellotti, R. & Tangaro, S. A novel approach to brain connectivity reveals early structural changes in alzheimer’s disease. Physiological Measurement (2018). es_ES
dc.description.references Maggipinto, T. et al. Dti measurements for alzheimer’s classification. Physics in Medicine and Biology 62, 2361 (2017). es_ES
dc.description.references Khan, W. et al. Automated hippocampal subfield measures as predictors of conversion from mild cognitive impairment to alzheimer’s disease in two independent cohorts. Brain topography 28, 746–759 (2015). es_ES
dc.description.references Thal, D. R. et al. Alzheimer-related τ-pathology in the perforant path target zone and in the hippocampal stratum oriens and radiatum correlates with onset and degree of dementia. Experimental neurology 163, 98–110 (2000). es_ES
dc.description.references Mueller, S. et al. Measurement of hippocampal subfields and age-related changes with high resolution MRI at 4T. Neurobiology of aging 28, 719–726 (2007). es_ES
dc.description.references Carlesimo, G. A. et al. Atrophy of presubiculum and subiculum is the earliest hippocampal anatomical marker of Alzheimer’s disease. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring 1, 24–32 (2015). es_ES
dc.description.references Oishi, K. et al. Multi-modal MRI analysis with disease-specific spatial filtering: initial testing to predict mild cognitive impairment patients who convert to alzheimer’s disease. Frontiers in neurology 2, 54 (2011). es_ES
dc.description.references Arbabshirani, M. R., Plis, S., Sui, J. & Calhoun, V. D. Single subject prediction of brain disorders in neuroimaging: Promises and pitfalls. NeuroImage 145, 137–165 (2017). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem