- -

Host-Guest and Guest-Guest Interactions of P- and N-Containing Structure Directing Agents Entrapped inside MFI-Type Zeolite by Multinuclear NMR Spectroscopy

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Host-Guest and Guest-Guest Interactions of P- and N-Containing Structure Directing Agents Entrapped inside MFI-Type Zeolite by Multinuclear NMR Spectroscopy

Mostrar el registro completo del ítem

Martinez-Ortigosa, J.; Simancas-Coloma, J.; Vidal Moya, JA.; Gaveau, P.; Rey Garcia, F.; Alonso, B.; Blasco Lanzuela, T. (2019). Host-Guest and Guest-Guest Interactions of P- and N-Containing Structure Directing Agents Entrapped inside MFI-Type Zeolite by Multinuclear NMR Spectroscopy. The Journal of Physical Chemistry C. 123(36):22324-22334. https://doi.org/10.1021/acs.jpcc.9b05689

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/160761

Ficheros en el ítem

Metadatos del ítem

Título: Host-Guest and Guest-Guest Interactions of P- and N-Containing Structure Directing Agents Entrapped inside MFI-Type Zeolite by Multinuclear NMR Spectroscopy
Autor: Martinez-Ortigosa, Joaquin Simancas-Coloma, Jorge Vidal Moya, José Alejandro Gaveau, Philippe Rey Garcia, Fernando Alonso, B. Blasco Lanzuela, Teresa
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Fecha difusión:
Resumen:
[EN] Highly crystalline pure silica MFI zeolites have been synthesized using tetraethylammonium (TEA), tetraethylphosphonium (TEP), or a mixture of both cations in different proportions as organic structure directing agents ...[+]
Palabras clave: Solid-State NMR , 5-Coordinate Silicon , Molecular-Sieves , Preferential location , N-14 , ZSM-5 , Crystals , Probe , Ge
Derechos de uso: Reserva de todos los derechos
Fuente:
The Journal of Physical Chemistry C. (issn: 1932-7447 )
DOI: 10.1021/acs.jpcc.9b05689
Editorial:
American Chemical Society
Versión del editor: https://doi.org/10.1021/acs.jpcc.9b05689
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-101784-B-I00/ES/NUEVOS MATERIALES ZEOLITICOS PARA PROCESOS DE SEPARACION SELECTIVA DE GASES, APLICACIONES MEDIOAMBIENTALES Y CONSERVACION DE ALIMENTOS/
info:eu-repo/grantAgreement/MINECO//SEV-2012-0267/
info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/
Descripción: "This document is the Accepted Manuscript version of a Published Work that appeared in final form in The Journal of Physical Chemistry C, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://pubs.acs.org/doi/10.1021/acs.jpcc.9b05689".
Agradecimientos:
Financial support by the MINECO of Spain through the Severo Ochoa (SEV-2016-0683) and RTI2018-101784-B-I00 projects is gratefully acknowledged. The authors also thank the Microscopy Service of the Universitat Politecnica ...[+]
Tipo: Artículo

References

Davis, M. E., & Lobo, R. F. (1992). Zeolite and molecular sieve synthesis. Chemistry of Materials, 4(4), 756-768. doi:10.1021/cm00022a005

Cundy, C. S., & Cox, P. A. (2003). The Hydrothermal Synthesis of Zeolites:  History and Development from the Earliest Days to the Present Time. Chemical Reviews, 103(3), 663-702. doi:10.1021/cr020060i

Wilson, S. T., Lok, B. M., Messina, C. A., Cannan, T. R., & Flanigen, E. M. (1982). Aluminophosphate molecular sieves: a new class of microporous crystalline inorganic solids. Journal of the American Chemical Society, 104(4), 1146-1147. doi:10.1021/ja00368a062 [+]
Davis, M. E., & Lobo, R. F. (1992). Zeolite and molecular sieve synthesis. Chemistry of Materials, 4(4), 756-768. doi:10.1021/cm00022a005

Cundy, C. S., & Cox, P. A. (2003). The Hydrothermal Synthesis of Zeolites:  History and Development from the Earliest Days to the Present Time. Chemical Reviews, 103(3), 663-702. doi:10.1021/cr020060i

Wilson, S. T., Lok, B. M., Messina, C. A., Cannan, T. R., & Flanigen, E. M. (1982). Aluminophosphate molecular sieves: a new class of microporous crystalline inorganic solids. Journal of the American Chemical Society, 104(4), 1146-1147. doi:10.1021/ja00368a062

Liu, X., Yan, N., Wang, L., Ma, C., Guo, P., Tian, P., … Liu, Z. (2019). Landscape of AlPO-based structures and compositions in the database of zeolite structures. Microporous and Mesoporous Materials, 280, 105-115. doi:10.1016/j.micromeso.2019.01.047

McCusker, L. B., Liebau, F., & Engelhardt, G. (2003). Nomenclature of structural and compositional characteristics of ordered microporous and mesoporous materials with inorganic hosts. Microporous and Mesoporous Materials, 58(1), 3-13. doi:10.1016/s1387-1811(02)00545-0

Davis, M. E. (2013). Zeolites from a Materials Chemistry Perspective. Chemistry of Materials, 26(1), 239-245. doi:10.1021/cm401914u

Corma, A., & Martinez, A. (1995). Zeolites and Zeotypes as catalysts. Advanced Materials, 7(2), 137-144. doi:10.1002/adma.19950070206

Corma, A. (1997). From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis. Chemical Reviews, 97(6), 2373-2420. doi:10.1021/cr960406n

Burton, A. W., & Zones, S. I. (2007). Organic Molecules in Zeolite Synthesis: Their Preparation and Structure-Directing Effects. Introduction to Zeolite Science and Practice, 137-179. doi:10.1016/s0167-2991(07)80793-2

Moliner, M., Rey, F., & Corma, A. (2013). Towards the Rational Design of Efficient Organic Structure-Directing Agents for Zeolite Synthesis. Angewandte Chemie International Edition, 52(52), 13880-13889. doi:10.1002/anie.201304713

Martínez, C., & Corma, A. (2011). Inorganic molecular sieves: Preparation, modification and industrial application in catalytic processes. Coordination Chemistry Reviews, 255(13-14), 1558-1580. doi:10.1016/j.ccr.2011.03.014

Sastre, G., Vidal-Moya, J. A., Blasco, T., Rius, J., Jordá, J. L., Navarro, M. T., … Corma, A. (2002). Preferential Location of Ge Atoms in Polymorph C of Beta Zeolite (ITQ-17) and Their Structure-Directing Effect: A Computational, XRD, and NMR Spectroscopic Study. Angewandte Chemie International Edition, 41(24), 4722-4726. doi:10.1002/anie.200290028

Chauhan, N. L., Das, J., Jasra, R. V., Parikh, P. A., & Murthy, Z. V. P. (2012). Synthesis of small-sized ZSM-5 zeolites employing mixed structure directing agents. Materials Letters, 74, 115-117. doi:10.1016/j.matlet.2012.01.094

Mitani, E., Yamasaki, Y., Tsunoji, N., Sadakane, M., & Sano, T. (2018). Synthesis of phosphorus-modified AFX zeolite using a dual-template method with tetraethylphosphonium hydroxide as phosphorus modification agent. Microporous and Mesoporous Materials, 267, 192-197. doi:10.1016/j.micromeso.2018.03.033

Blasco, T., Corma, A., Díaz-Cabañas, M. J., Rey, F., Vidal-Moya, J. A., & Zicovich-Wilson, C. M. (2002). Preferential Location of Ge in the Double Four-Membered Ring Units of ITQ-7 Zeolite. The Journal of Physical Chemistry B, 106(10), 2634-2642. doi:10.1021/jp013302b

Camblor, M. A., Villaescusa, L. A., & Díaz‐Cabañas, M. J. (1999). Topics in Catalysis, 9(1/2), 59-76. doi:10.1023/a:1019154304344

Koller, H., Wölker, A., Villaescusa, L. A., Díaz-Cabañas, M. J., Valencia, S., & Camblor, M. A. (1999). Five-Coordinate Silicon in High-Silica Zeolites. Journal of the American Chemical Society, 121(14), 3368-3376. doi:10.1021/ja9840549

Koller, H., Wölker, A., Eckert, H., Panz, C., & Behrens, P. (1997). Five-Coordinate Silicon in Zeolites: Probing SiO4/2F− Sites in Nonasil and ZSM-5 with29Si Solid-State NMR Spectroscopy. Angewandte Chemie International Edition in English, 36(24), 2823-2825. doi:10.1002/anie.199728231

Dědeček, J., Tabor, E., & Sklenak, S. (2018). Tuning the Aluminum Distribution in Zeolites to Increase their Performance in Acid-Catalyzed Reactions. ChemSusChem, 12(3), 556-576. doi:10.1002/cssc.201801959

Li, C., Vidal-Moya, A., Miguel, P. J., Dedecek, J., Boronat, M., & Corma, A. (2018). Selective Introduction of Acid Sites in Different Confined Positions in ZSM-5 and Its Catalytic Implications. ACS Catalysis, 8(8), 7688-7697. doi:10.1021/acscatal.8b02112

Gallego, E. M., Portilla, M. T., Paris, C., León-Escamilla, A., Boronat, M., Moliner, M., & Corma, A. (2017). «Ab initio» synthesis of zeolites for preestablished catalytic reactions. Science, 355(6329), 1051-1054. doi:10.1126/science.aal0121

Simancas, J., Simancas, R., Bereciartua, P. J., Jorda, J. L., Rey, F., Corma, A., … Mugnaioli, E. (2016). Ultrafast Electron Diffraction Tomography for Structure Determination of the New Zeolite ITQ-58. Journal of the American Chemical Society, 138(32), 10116-10119. doi:10.1021/jacs.6b06394

Yun, Y., Hernández, M., Wan, W., Zou, X., Jordá, J. L., Cantín, A., … Corma, A. (2015). The first zeolite with a tri-directional extra-large 14-ring pore system derived using a phosphonium-based organic molecule. Chemical Communications, 51(36), 7602-7605. doi:10.1039/c4cc10317c

Sonoda, T., Maruo, T., Yamasaki, Y., Tsunoji, N., Takamitsu, Y., Sadakane, M., & Sano, T. (2015). Synthesis of high-silica AEI zeolites with enhanced thermal stability by hydrothermal conversion of FAU zeolites, and their activity in the selective catalytic reduction of NOx with NH3. Journal of Materials Chemistry A, 3(2), 857-865. doi:10.1039/c4ta05621c

Kakiuchi, Y., Tanigawa, T., Tsunoji, N., Takamitsu, Y., Sadakane, M., & Sano, T. (2019). Phosphorus modified small-pore zeolites and their catalytic performances in ethanol conversion and NH3-SCR reactions. Applied Catalysis A: General, 575, 204-213. doi:10.1016/j.apcata.2019.02.026

Van der Bij, H. E., & Weckhuysen, B. M. (2015). Phosphorus promotion and poisoning in zeolite-based materials: synthesis, characterisation and catalysis. Chemical Society Reviews, 44(20), 7406-7428. doi:10.1039/c5cs00109a

BLASCO, T., CORMA, A., & MARTINEZTRIGUERO, J. (2006). Hydrothermal stabilization of ZSM-5 catalytic-cracking additives by phosphorus addition. Journal of Catalysis, 237(2), 267-277. doi:10.1016/j.jcat.2005.11.011

Liu, X., & Luo, Q. (2017). Solid State NMR Spectroscopy Studies of the Nature of Structure Direction of OSDAs in Pure-Silica Zeolites ZSM-5 and Beta. The Journal of Physical Chemistry C, 121(24), 13211-13217. doi:10.1021/acs.jpcc.7b03350

Fyfe, C. A., & Brouwer, D. H. (2006). Optimization, Standardization, and Testing of a New NMR Method for the Determination of Zeolite Host−Organic Guest Crystal Structures. Journal of the American Chemical Society, 128(36), 11860-11871. doi:10.1021/ja060744y

Dib, E., Gimenez, A., Mineva, T., & Alonso, B. (2015). Preferential orientations of structure directing agents in zeolites. Dalton Transactions, 44(38), 16680-16683. doi:10.1039/c5dt02558c

Dib, E., Mineva, T., Gaveau, P., & Alonso, B. (2013). 14N solid-state NMR: a sensitive probe of the local order in zeolites. Physical Chemistry Chemical Physics, 15(42), 18349. doi:10.1039/c3cp51845k

Dib, E., Mineva, T., Gaveau, P., Véron, E., Sarou-Kanian, V., Fayon, F., & Alonso, B. (2017). Probing Disorder in Al-ZSM-5 Zeolites by 14N NMR Spectroscopy. The Journal of Physical Chemistry C, 121(29), 15831-15841. doi:10.1021/acs.jpcc.7b04861

Tuel, A., Ben Taǎrit, Y., & Naccache, C. (1993). Characterization of TS-1 synthesized using mixtures of tetrabutyl and tetraethyl ammonium hydroxides. Zeolites, 13(6), 454-461. doi:10.1016/0144-2449(93)90120-r

Ding, J., Xue, T., Wu, H., & He, M. (2017). One-step post-synthesis treatment for preparing hydrothermally stable hierarchically porous ZSM-5. Chinese Journal of Catalysis, 38(1), 48-57. doi:10.1016/s1872-2067(16)62549-4

Schmidt-Rohr, K., Clauss, J., & Spiess, H. W. (1992). Correlation of structure, mobility, and morphological information in heterogeneous polymer materials by two-dimensional wideline-separation NMR spectroscopy. Macromolecules, 25(12), 3273-3277. doi:10.1021/ma00038a037

Massiot, D., Fayon, F., Capron, M., King, I., Le Calvé, S., Alonso, B., … Hoatson, G. (2001). Modelling one- and two-dimensional solid-state NMR spectra. Magnetic Resonance in Chemistry, 40(1), 70-76. doi:10.1002/mrc.984

Chen, X., Yan, W., Cao, X., Yu, J., & Xu, R. (2009). Fabrication of silicalite-1 crystals with tunable aspect ratios by microwave-assisted solvothermal synthesis. Microporous and Mesoporous Materials, 119(1-3), 217-222. doi:10.1016/j.micromeso.2008.10.015

Schmidt, J. E., Fu, D., Deem, M. W., & Weckhuysen, B. M. (2016). Template–Framework Interactions in Tetraethylammonium‐Directed Zeolite Synthesis. Angewandte Chemie International Edition, 55(52), 16044-16048. doi:10.1002/anie.201609053

Baerlocher, Ch.; McCusker, L. B. Database of Zeolite Structures. http://www.iza-structure.org/databases/.

Fyfe, C. A., Brouwer, D. H., Lewis, A. R., Villaescusa, L. A., & Morris, R. E. (2002). Combined Solid State NMR and X-ray Diffraction Investigation of the Local Structure of the Five-Coordinate Silicon in Fluoride-Containing As-Synthesized STF Zeolite. Journal of the American Chemical Society, 124(26), 7770-7778. doi:10.1021/ja012558s

Fyfe, C. A., Brouwer, D. H., Lewis, A. R., & Chézeau, J.-M. (2001). Location of the Fluoride Ion in Tetrapropylammonium Fluoride Silicalite-1 Determined by 1H/19F/29Si Triple Resonance CP, REDOR, and TEDOR NMR Experiments. Journal of the American Chemical Society, 123(28), 6882-6891. doi:10.1021/ja010532v

Brunklaus, G., Koller, H., & Zones, S. I. (2016). Defect Models of As-Made High-Silica Zeolites: Clusters of Hydrogen-Bonds and Their Interaction with the Organic Structure-Directing Agents Determined from1H Double and Triple Quantum NMR Spectroscopy. Angewandte Chemie International Edition, 55(46), 14459-14463. doi:10.1002/anie.201607428

Koller, H., Lobo, R. F., Burkett, S. L., & Davis, M. E. (1995). SiO-.cntdot. .cntdot. .cntdot.HOSi Hydrogen Bonds in As-Synthesized High-Silica Zeolites. The Journal of Physical Chemistry, 99(33), 12588-12596. doi:10.1021/j100033a036

Dib, E., Grand, J., Mintova, S., & Fernandez, C. (2015). Structure-Directing Agent Governs the Location of Silanol Defects in Zeolites. Chemistry of Materials, 27(22), 7577-7579. doi:10.1021/acs.chemmater.5b03668

Losch, P., Pinar, A. B., Willinger, M. G., Soukup, K., Chavan, S., Vincent, B., … Louis, B. (2017). H-ZSM-5 zeolite model crystals: Structure-diffusion-activity relationship in methanol-to-olefins catalysis. Journal of Catalysis, 345, 11-23. doi:10.1016/j.jcat.2016.11.005

Dib, E., Alonso, B., & Mineva, T. (2014). DFT-D Study of 14N Nuclear Quadrupolar Interactions in Tetra-n-alkyl Ammonium Halide Crystals. The Journal of Physical Chemistry A, 118(19), 3525-3533. doi:10.1021/jp502858n

Mineva, T., Gaveau, P., Galarneau, A., Massiot, D., & Alonso, B. (2011). 14N: A Sensitive NMR Probe for the Study of Surfactant–Oxide Interfaces. The Journal of Physical Chemistry C, 115(39), 19293-19302. doi:10.1021/jp206567q

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem