- -

A Simplified Water Accounting Procedure to Assess Climate Change Impact on Water Resources for Agriculture across Different European River Basins

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Simplified Water Accounting Procedure to Assess Climate Change Impact on Water Resources for Agriculture across Different European River Basins

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Hunink, Johannes es_ES
dc.contributor.author Simons, Gijs es_ES
dc.contributor.author Suárez-Almiñana, Sara es_ES
dc.contributor.author Solera Solera, Abel es_ES
dc.contributor.author Andreu Álvarez, Joaquín es_ES
dc.contributor.author Giuliani, Matteo es_ES
dc.contributor.author Zamberletti, Patrizia es_ES
dc.contributor.author Grillakis, Manolis es_ES
dc.contributor.author Koutroulis, Aristeidis es_ES
dc.contributor.author Tsanis, Ioannis es_ES
dc.contributor.author Schasfoort, Femke es_ES
dc.contributor.author Contreras, Sergio es_ES
dc.contributor.author Ercin, Ertug es_ES
dc.contributor.author Bastiaanssen, Wim es_ES
dc.date.accessioned 2021-02-05T04:31:26Z
dc.date.available 2021-02-05T04:31:26Z
dc.date.issued 2019-09-23 es_ES
dc.identifier.issn 2073-4441 es_ES
dc.identifier.uri http://hdl.handle.net/10251/160763
dc.description.abstract [EN] European agriculture and water policies require accurate information on climate change impacts on available water resources. Water accounting, that is a standardized documentation of data on water resources, is a useful tool to provide this information. Pan-European data on climate impacts do not recognize local anthropogenic interventions in the water cycle. Most European river basins have a specific toolset that is understood and used by local experts and stakeholders. However, these local tools are not versatile. Thus, there is a need for a common approach that can be understood by multi-fold users to quantify impact indicators based on local data and that can be used to synthesize information at the European level. Then, policies can be designed with the confidence that underlying data are backed-up by local context and expert knowledge. This work presents a simplified water accounting framework that allows for a standardized examination of climate impacts on water resource availability and use across multiple basins. The framework is applied to five different river basins across Europe. Several indicators are extracted that explicitly describe green water fluxes versus blue water fluxes and impacts on agriculture. The examples show that a simplified water accounting framework can be used to synthesize basin-level information on climate change impacts which can support policymaking on climate adaptation, water resources and agriculture. es_ES
dc.description.sponsorship This research was funded by Horizon 2020 IMPREX project, grant number 641811 es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Water es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Climate change impacts es_ES
dc.subject Water resources es_ES
dc.subject Agriculture es_ES
dc.subject Water accounting es_ES
dc.subject Hydrological data es_ES
dc.subject Water scarcity and drought es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.title A Simplified Water Accounting Procedure to Assess Climate Change Impact on Water Resources for Agriculture across Different European River Basins es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/w11101976 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/641811/EU/IMproving PRedictions and management of hydrological EXtremes/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient es_ES
dc.description.bibliographicCitation Hunink, J.; Simons, G.; Suárez-Almiñana, S.; Solera Solera, A.; Andreu Álvarez, J.; Giuliani, M.; Zamberletti, P.... (2019). A Simplified Water Accounting Procedure to Assess Climate Change Impact on Water Resources for Agriculture across Different European River Basins. Water. 11(10):1-29. https://doi.org/10.3390/w11101976 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/w11101976 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 29 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 10 es_ES
dc.relation.pasarela S\394720 es_ES
dc.contributor.funder European Commission es_ES
dc.description.references Jacob, D., Kotova, L., Teichmann, C., Sobolowski, S. P., Vautard, R., Donnelly, C., … van Vliet, M. T. H. (2018). Climate Impacts in Europe Under +1.5°C Global Warming. Earth’s Future, 6(2), 264-285. doi:10.1002/2017ef000710 es_ES
dc.description.references Koutroulis, A. G., Grillakis, M. G., Daliakopoulos, I. N., Tsanis, I. K., & Jacob, D. (2016). Cross sectoral impacts on water availability at +2 °C and +3 °C for east Mediterranean island states: The case of Crete. Journal of Hydrology, 532, 16-28. doi:10.1016/j.jhydrol.2015.11.015 es_ES
dc.description.references Dezsi, Ş., Mîndrescu, M., Petrea, D., Rai, P. K., Hamann, A., & Nistor, M.-M. (2018). High-resolution projections of evapotranspiration and water availability for Europe under climate change. International Journal of Climatology, 38(10), 3832-3841. doi:10.1002/joc.5537 es_ES
dc.description.references Forzieri, G., Feyen, L., Russo, S., Vousdoukas, M., Alfieri, L., Outten, S., … Cid, A. (2016). Multi-hazard assessment in Europe under climate change. Climatic Change, 137(1-2), 105-119. doi:10.1007/s10584-016-1661-x es_ES
dc.description.references Ruosteenoja, K., Markkanen, T., Venäläinen, A., Räisänen, P., & Peltola, H. (2017). Seasonal soil moisture and drought occurrence in Europe in CMIP5 projections for the 21st century. Climate Dynamics, 50(3-4), 1177-1192. doi:10.1007/s00382-017-3671-4 es_ES
dc.description.references Stahl, K., Kohn, I., Blauhut, V., Urquijo, J., De Stefano, L., Acacio, V., … Van Lanen, H. A. J. (2015). Impacts of European drought events: insights from an international database of text-based reports. doi:10.5194/nhessd-3-5453-2015 es_ES
dc.description.references Van Lanen, H. A. J., Laaha, G., Kingston, D. G., Gauster, T., Ionita, M., Vidal, J., … Van Loon, A. F. (2016). Hydrology needed to manage droughts: the 2015 European case. Hydrological Processes, 30(17), 3097-3104. doi:10.1002/hyp.10838 es_ES
dc.description.references Moore, F. C., & Lobell, D. B. (2014). Adaptation potential of European agriculture in response to climate change. Nature Climate Change, 4(7), 610-614. doi:10.1038/nclimate2228 es_ES
dc.description.references Iglesias, A., & Garrote, L. (2015). Adaptation strategies for agricultural water management under climate change in Europe. Agricultural Water Management, 155, 113-124. doi:10.1016/j.agwat.2015.03.014 es_ES
dc.description.references Llop, M., & Ponce-Alifonso, X. (2016). Water and Agriculture in a Mediterranean Region: The Search for a Sustainable Water Policy Strategy. Water, 8(2), 66. doi:10.3390/w8020066 es_ES
dc.description.references Escribano Francés, G., Quevauviller, P., San Martín González, E., & Vargas Amelin, E. (2017). Climate change policy and water resources in the EU and Spain. A closer look into the Water Framework Directive. Environmental Science & Policy, 69, 1-12. doi:10.1016/j.envsci.2016.12.006 es_ES
dc.description.references Bastiaanssen, W. G. M., & Steduto, P. (2017). The water productivity score (WPS) at global and regional level: Methodology and first results from remote sensing measurements of wheat, rice and maize. Science of The Total Environment, 575, 595-611. doi:10.1016/j.scitotenv.2016.09.032 es_ES
dc.description.references Simons, G. W. H. (Gijs), Bastiaanssen, W. G. M. (Wim), & Immerzeel, W. W. (Walter). (2015). Water reuse in river basins with multiple users: A literature review. Journal of Hydrology, 522, 558-571. doi:10.1016/j.jhydrol.2015.01.016 es_ES
dc.description.references Lavrnić, S., Zapater-Pereyra, M., & Mancini, M. L. (2017). Water Scarcity and Wastewater Reuse Standards in Southern Europe: Focus on Agriculture. Water, Air, & Soil Pollution, 228(7). doi:10.1007/s11270-017-3425-2 es_ES
dc.description.references Ricart, S., & Rico, A. M. (2019). Assessing technical and social driving factors of water reuse in agriculture: A review on risks, regulation and the yuck factor. Agricultural Water Management, 217, 426-439. doi:10.1016/j.agwat.2019.03.017 es_ES
dc.description.references Hoekstra, A., Chapagain, A., & van Oel, P. (2017). Advancing Water Footprint Assessment Research: Challenges in Monitoring Progress towards Sustainable Development Goal 6. Water, 9(6), 438. doi:10.3390/w9060438 es_ES
dc.description.references Roudier, P., Andersson, J. C. M., Donnelly, C., Feyen, L., Greuell, W., & Ludwig, F. (2015). Projections of future floods and hydrological droughts in Europe under a +2°C global warming. Climatic Change, 135(2), 341-355. doi:10.1007/s10584-015-1570-4 es_ES
dc.description.references Samaniego, L., Thober, S., Kumar, R., Wanders, N., Rakovec, O., Pan, M., … Marx, A. (2018). Anthropogenic warming exacerbates European soil moisture droughts. Nature Climate Change, 8(5), 421-426. doi:10.1038/s41558-018-0138-5 es_ES
dc.description.references Panagopoulos, Y., Stefanidis, K., Faneca Sanchez, M., Sperna Weiland, F., Van Beek, R., Venohr, M., … Birk, S. (2019). Pan-European Calculation of Hydrologic Stress Metrics in Rivers: A First Assessment with Potential Connections to Ecological Status. Water, 11(4), 703. doi:10.3390/w11040703 es_ES
dc.description.references Macknick, J., Newmark, R., Heath, G., & Hallett, K. C. (2012). Operational water consumption and withdrawal factors for electricity generating technologies: a review of existing literature. Environmental Research Letters, 7(4), 045802. doi:10.1088/1748-9326/7/4/045802 es_ES
dc.description.references Koutroulis, A. G., Papadimitriou, L. V., Grillakis, M. G., Tsanis, I. K., Wyser, K., & Betts, R. A. (2018). Freshwater vulnerability under high end climate change. A pan-European assessment. Science of The Total Environment, 613-614, 271-286. doi:10.1016/j.scitotenv.2017.09.074 es_ES
dc.description.references Lobanova, A., Liersch, S., Nunes, J. P., Didovets, I., Stagl, J., Huang, S., … Krysanova, V. (2018). Hydrological impacts of moderate and high-end climate change across European river basins. Journal of Hydrology: Regional Studies, 18, 15-30. doi:10.1016/j.ejrh.2018.05.003 es_ES
dc.description.references Beck, H. E., Vergopolan, N., Pan, M., Levizzani, V., van Dijk, A. I. J. M., Weedon, G. P., … Wood, E. F. (2017). Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling. Hydrology and Earth System Sciences, 21(12), 6201-6217. doi:10.5194/hess-21-6201-2017 es_ES
dc.description.references Naz, B. S., Kurtz, W., Montzka, C., Sharples, W., Goergen, K., Keune, J., … Kollet, S. (2019). Improving soil moisture and runoff simulations at 3 km over Europe using land surface data assimilation. Hydrology and Earth System Sciences, 23(1), 277-301. doi:10.5194/hess-23-277-2019 es_ES
dc.description.references Haro, D., Solera, A., Paredes, J., & Andreu, J. (2014). Methodology for Drought Risk Assessment in Within-year Regulated Reservoir Systems. Application to the Orbigo River System (Spain). Water Resources Management, 28(11), 3801-3814. doi:10.1007/s11269-014-0710-3 es_ES
dc.description.references Zaniolo, M., Giuliani, M., Castelletti, A. F., & Pulido-Velazquez, M. (2018). Automatic design of basin-specific drought indexes for highly regulated water systems. Hydrology and Earth System Sciences, 22(4), 2409-2424. doi:10.5194/hess-22-2409-2018 es_ES
dc.description.references Koutroulis, A. G., Tsanis, I. K., Daliakopoulos, I. N., & Jacob, D. (2013). Impact of climate change on water resources status: A case study for Crete Island, Greece. Journal of Hydrology, 479, 146-158. doi:10.1016/j.jhydrol.2012.11.055 es_ES
dc.description.references Vargas-Amelin, E., & Pindado, P. (2014). The challenge of climate change in Spain: Water resources, agriculture and land. Journal of Hydrology, 518, 243-249. doi:10.1016/j.jhydrol.2013.11.035 es_ES
dc.description.references Giuliani, M., Li, Y., Castelletti, A., & Gandolfi, C. (2016). A coupled human-natural systems analysis of irrigated agriculture under changing climate. Water Resources Research, 52(9), 6928-6947. doi:10.1002/2016wr019363 es_ES
dc.description.references Giuliani, M., & Castelletti, A. (2016). Is robustness really robust? How different definitions of robustness impact decision-making under climate change. Climatic Change, 135(3-4), 409-424. doi:10.1007/s10584-015-1586-9 es_ES
dc.description.references Grindlay, A. L., Zamorano, M., Rodríguez, M. I., Molero, E., & Urrea, M. A. (2011). Implementation of the European Water Framework Directive: Integration of hydrological and regional planning at the Segura River Basin, southeast Spain. Land Use Policy, 28(1), 242-256. doi:10.1016/j.landusepol.2010.06.005 es_ES
dc.description.references Quevauviller, P., Barceló, D., Beniston, M., Djordjevic, S., Harding, R. J., Iglesias, A., … Werner, M. (2012). Integration of research advances in modelling and monitoring in support of WFD river basin management planning in the context of climate change. Science of The Total Environment, 440, 167-177. doi:10.1016/j.scitotenv.2012.07.055 es_ES
dc.description.references Edens, B., & Graveland, C. (2014). Experimental valuation of Dutch water resources according to SNA and SEEA. Water Resources and Economics, 7, 66-81. doi:10.1016/j.wre.2014.10.003 es_ES
dc.description.references Pedro-Monzonís, M., Jiménez-Fernández, P., Solera, A., & Jiménez-Gavilán, P. (2016). The use of AQUATOOL DSS applied to the System of Environmental-Economic Accounting for Water (SEEAW). Journal of Hydrology, 533, 1-14. doi:10.1016/j.jhydrol.2015.11.034 es_ES
dc.description.references Gouveia, C. M., Trigo, R. M., Beguería, S., & Vicente-Serrano, S. M. (2017). Drought impacts on vegetation activity in the Mediterranean region: An assessment using remote sensing data and multi-scale drought indicators. Global and Planetary Change, 151, 15-27. doi:10.1016/j.gloplacha.2016.06.011 es_ES
dc.description.references Borrego-Marín, M., Gutiérrez-Martín, C., & Berbel, J. (2016). Water Productivity under Drought Conditions Estimated Using SEEA-Water. Water, 8(4), 138. doi:10.3390/w8040138 es_ES
dc.description.references Vardon, M., Lenzen, M., Peevor, S., & Creaser, M. (2007). Water accounting in Australia. Ecological Economics, 61(4), 650-659. doi:10.1016/j.ecolecon.2006.07.033 es_ES
dc.description.references Pedro-Monzonís, M., del Longo, M., Solera, A., Pecora, S., & Andreu, J. (2016). Water Accounting in the Po River Basin Applied to Climate Change Scenarios. Procedia Engineering, 162, 246-253. doi:10.1016/j.proeng.2016.11.051 es_ES
dc.description.references Momblanch, A., Andreu, J., Paredes-Arquiola, J., Solera, A., & Pedro-Monzonís, M. (2014). Adapting water accounting for integrated water resource management. The Júcar Water Resource System (Spain). Journal of Hydrology, 519, 3369-3385. doi:10.1016/j.jhydrol.2014.10.002 es_ES
dc.description.references Karimi, P., Bastiaanssen, W. G. M., & Molden, D. (2012). Water Accounting Plus (WA+) – a water accounting procedure for complex river basins based on satellite measurements. doi:10.5194/hessd-9-12879-2012 es_ES
dc.description.references Karimi, P., Bastiaanssen, W. G. M., Molden, D., & Cheema, M. J. M. (2013). Basin-wide water accounting based on remote sensing data: an application for the Indus Basin. Hydrology and Earth System Sciences, 17(7), 2473-2486. doi:10.5194/hess-17-2473-2013 es_ES
dc.description.references Orth, R., & Destouni, G. (2018). Drought reduces blue-water fluxes more strongly than green-water fluxes in Europe. Nature Communications, 9(1). doi:10.1038/s41467-018-06013-7 es_ES
dc.description.references Van den Hurk, B., Hirschi, M., Schär, C., Lenderink, G., van Meijgaard, E., van Ulden, A., … Jones, R. (2005). Soil Control on Runoff Response to Climate Change in Regional Climate Model Simulations. Journal of Climate, 18(17), 3536-3551. doi:10.1175/jcli3471.1 es_ES
dc.description.references Bergström, S., Carlsson, B., Gardelin, M., Lindström, G., Pettersson, A., & Rummukainen, M. (2001). Climate change impacts on runoff in Sweden-assessments by global climate models, dynamical downscaling and hydrological modelling. Climate Research, 16, 101-112. doi:10.3354/cr016101 es_ES
dc.description.references Arnell, N. W. (1999). The effect of climate change on hydrological regimes in Europe: a continental perspective. Global Environmental Change, 9(1), 5-23. doi:10.1016/s0959-3780(98)00015-6 es_ES
dc.description.references Teuling, A. J., Van Loon, A. F., Seneviratne, S. I., Lehner, I., Aubinet, M., Heinesch, B., … Spank, U. (2013). Evapotranspiration amplifies European summer drought. Geophysical Research Letters, 40(10), 2071-2075. doi:10.1002/grl.50495 es_ES
dc.description.references Destouni, G., & Prieto, C. (2018). Robust Assessment of Uncertain Freshwater Changes: The Case of Greece with Large Irrigation—and Climate-Driven Runoff Decrease. Water, 10(11), 1645. doi:10.3390/w10111645 es_ES
dc.description.references Suárez-Almiñana, S., Pedro-Monzonís, M., Paredes-Arquiola, J., Andreu, J., & Solera, A. (2017). Linking Pan-European data to the local scale for decision making for global change and water scarcity within water resources planning and management. Science of The Total Environment, 603-604, 126-139. doi:10.1016/j.scitotenv.2017.05.259 es_ES
dc.description.references Huang, Z., Hejazi, M., Tang, Q., Vernon, C. R., Liu, Y., Chen, M., & Calvin, K. (2019). Global agricultural green and blue water consumption under future climate and land use changes. Journal of Hydrology, 574, 242-256. doi:10.1016/j.jhydrol.2019.04.046 es_ES
dc.description.references Kahil, M. T., Connor, J. D., & Albiac, J. (2015). Efficient water management policies for irrigation adaptation to climate change in Southern Europe. Ecological Economics, 120, 226-233. doi:10.1016/j.ecolecon.2015.11.004 es_ES
dc.description.references Velasco-Muñoz, J., Aznar-Sánchez, J., Belmonte-Ureña, L., & López-Serrano, M. (2018). Advances in Water Use Efficiency in Agriculture: A Bibliometric Analysis. Water, 10(4), 377. doi:10.3390/w10040377 es_ES
dc.description.references Berbel, J., & Mateos, L. (2014). Does investment in irrigation technology necessarily generate rebound effects? A simulation analysis based on an agro-economic model. Agricultural Systems, 128, 25-34. doi:10.1016/j.agsy.2014.04.002 es_ES
dc.description.references Pedro-Monzonís, M., Ferrer, J., Solera, A., Estrela, T., & Paredes-Arquiola, J. (2014). Water Accounts and Water Stress Indexes in the European Context of Water Planning: The Jucar River Basin. Procedia Engineering, 89, 1470-1477. doi:10.1016/j.proeng.2014.11.431 es_ES
dc.description.references Vanham, D., Hoekstra, A. Y., Wada, Y., Bouraoui, F., de Roo, A., Mekonnen, M. M., … Bidoglio, G. (2018). Physical water scarcity metrics for monitoring progress towards SDG target 6.4: An evaluation of indicator 6.4.2 «Level of water stress». Science of The Total Environment, 613-614, 218-232. doi:10.1016/j.scitotenv.2017.09.056 es_ES
dc.description.references Liu, J., Yang, H., Gosling, S. N., Kummu, M., Flörke, M., Pfister, S., … Oki, T. (2017). Water scarcity assessments in the past, present, and future. Earth’s Future, 5(6), 545-559. doi:10.1002/2016ef000518 es_ES
dc.description.references Wada, Y., van Beek, L. P. H., Viviroli, D., Dürr, H. H., Weingartner, R., & Bierkens, M. F. P. (2011). Global monthly water stress: 2. Water demand and severity of water stress. Water Resources Research, 47(7). doi:10.1029/2010wr009792 es_ES
dc.description.references Eekhout, J. P. C., Hunink, J. E., Terink, W., & de Vente, J. (2018). Why increased extreme precipitation under climate change negatively affects water security. Hydrology and Earth System Sciences, 22(11), 5935-5946. doi:10.5194/hess-22-5935-2018 es_ES
dc.description.references Pellicer-Martínez, F., & Martínez-Paz, J. M. (2018). Climate change effects on the hydrology of the headwaters of the Tagus River: implications for the management of the Tagus–Segura transfer. Hydrology and Earth System Sciences, 22(12), 6473-6491. doi:10.5194/hess-22-6473-2018 es_ES
dc.description.references Navarro, T. (2018). Water reuse and desalination in Spain – challenges and opportunities. Journal of Water Reuse and Desalination, 8(2), 153-168. doi:10.2166/wrd.2018.043 es_ES
dc.description.references García-Rubio, M. A., & Guardiola, J. (2012). Desalination in Spain: A Growing Alternative for Water Supply. International Journal of Water Resources Development, 28(1), 171-186. doi:10.1080/07900627.2012.642245 es_ES
dc.description.references Andreu, J., Capilla, J., & Sanchís, E. (1996). AQUATOOL, a generalized decision-support system for water-resources planning and operational management. Journal of Hydrology, 177(3-4), 269-291. doi:10.1016/0022-1694(95)02963-x es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem