- -

Heat Generation in Single Magnetic Nanoparticles under Near-Infrared Irradiation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Heat Generation in Single Magnetic Nanoparticles under Near-Infrared Irradiation

Mostrar el registro completo del ítem

Rodríguez-Rodríguez, H.; Salas, G.; Arias-Gonzalez, JR. (2020). Heat Generation in Single Magnetic Nanoparticles under Near-Infrared Irradiation. The Journal of Physical Chemistry Letters. 11(6):2182-2187. https://doi.org/10.1021/acs.jpclett.0c00143

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/160813

Ficheros en el ítem

Metadatos del ítem

Título: Heat Generation in Single Magnetic Nanoparticles under Near-Infrared Irradiation
Autor: Rodríguez-Rodríguez, Héctor Salas, Gorka Arias-Gonzalez, J. R.
Entidad UPV: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Fecha difusión:
Resumen:
[EN] Heat generation by pointlike structures is an appealing concept for its implications in nanotechnology and biomedicine. The way to pump energy that excites heat locally and the synthesis of nanostructures that absorb ...[+]
Palabras clave: Nanoparticle , Hyperthermia , Magnetic , Optical tweezers
Derechos de uso: Reserva de todos los derechos
Fuente:
The Journal of Physical Chemistry Letters. (issn: 1948-7185 )
DOI: 10.1021/acs.jpclett.0c00143
Editorial:
American Chemical Society
Versión del editor: https://doi.org/10.1021/acs.jpclett.0c00143
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//MAT2015-71806-R/ES/INFLUENCIA DEL CALOR EMITIDO POR NANOPARTICULAS MAGNETICAS SOBRE BIOMOLECULAS DETERMINADO MEDIANTE PINZAS OPTICAS/
info:eu-repo/grantAgreement/MINECO//SEV-2016-0686/
Agradecimientos:
This work was supported by the Spanish Ministry of Science, Innovation and Universities (Grant MAT2015-71806-R). IMDEA Nanociencia acknowledges support from the "Severo Ochoa" Programme for Centers of Excellence in R&D ...[+]
Tipo: Artículo

References

Mohammed, L., Gomaa, H. G., Ragab, D., & Zhu, J. (2017). Magnetic nanoparticles for environmental and biomedical applications: A review. Particuology, 30, 1-14. doi:10.1016/j.partic.2016.06.001

Beik, J., Abed, Z., Ghoreishi, F. S., Hosseini-Nami, S., Mehrzadi, S., Shakeri-Zadeh, A., & Kamrava, S. K. (2016). Nanotechnology in hyperthermia cancer therapy: From fundamental principles to advanced applications. Journal of Controlled Release, 235, 205-221. doi:10.1016/j.jconrel.2016.05.062

Jaque, D., Martínez Maestro, L., del Rosal, B., Haro-Gonzalez, P., Benayas, A., Plaza, J. L., … García Solé, J. (2014). Nanoparticles for photothermal therapies. Nanoscale, 6(16), 9494-9530. doi:10.1039/c4nr00708e [+]
Mohammed, L., Gomaa, H. G., Ragab, D., & Zhu, J. (2017). Magnetic nanoparticles for environmental and biomedical applications: A review. Particuology, 30, 1-14. doi:10.1016/j.partic.2016.06.001

Beik, J., Abed, Z., Ghoreishi, F. S., Hosseini-Nami, S., Mehrzadi, S., Shakeri-Zadeh, A., & Kamrava, S. K. (2016). Nanotechnology in hyperthermia cancer therapy: From fundamental principles to advanced applications. Journal of Controlled Release, 235, 205-221. doi:10.1016/j.jconrel.2016.05.062

Jaque, D., Martínez Maestro, L., del Rosal, B., Haro-Gonzalez, P., Benayas, A., Plaza, J. L., … García Solé, J. (2014). Nanoparticles for photothermal therapies. Nanoscale, 6(16), 9494-9530. doi:10.1039/c4nr00708e

Ling, D., Lee, N., & Hyeon, T. (2015). Chemical Synthesis and Assembly of Uniformly Sized Iron Oxide Nanoparticles for Medical Applications. Accounts of Chemical Research, 48(5), 1276-1285. doi:10.1021/acs.accounts.5b00038

Stanicki, D., Elst, L. V., Muller, R. N., & Laurent, S. (2015). Synthesis and processing of magnetic nanoparticles. Current Opinion in Chemical Engineering, 8, 7-14. doi:10.1016/j.coche.2015.01.003

Jin, R., Lin, B., Li, D., & Ai, H. (2014). Superparamagnetic iron oxide nanoparticles for MR imaging and therapy: design considerations and clinical applications. Current Opinion in Pharmacology, 18, 18-27. doi:10.1016/j.coph.2014.08.002

Singh, D., McMillan, J. M., Kabanov, A. V., Sokolsky-Papkov, M., & Gendelman, H. E. (2014). Bench-to-bedside translation of magnetic nanoparticles. Nanomedicine, 9(4), 501-516. doi:10.2217/nnm.14.5

Weissig, V., Pettinger, T., & Murdock, N. (2014). Nanopharmaceuticals (part 1): products on the market. International Journal of Nanomedicine, 4357. doi:10.2147/ijn.s46900

Mosayebi, J., Kiyasatfar, M., & Laurent, S. (2017). Synthesis, Functionalization, and Design of Magnetic Nanoparticles for Theranostic Applications. Advanced Healthcare Materials, 6(23), 1700306. doi:10.1002/adhm.201700306

Shen, S., Kong, F., Guo, X., Wu, L., Shen, H., Xie, M., … Ge, Y. (2013). CMCTS stabilized Fe3O4 particles with extremely low toxicity as highly efficient near-infrared photothermal agents for in vivo tumor ablation. Nanoscale, 5(17), 8056. doi:10.1039/c3nr01447a

Espinosa, A., Di Corato, R., Kolosnjaj-Tabi, J., Flaud, P., Pellegrino, T., & Wilhelm, C. (2016). Duality of Iron Oxide Nanoparticles in Cancer Therapy: Amplification of Heating Efficiency by Magnetic Hyperthermia and Photothermal Bimodal Treatment. ACS Nano, 10(2), 2436-2446. doi:10.1021/acsnano.5b07249

Chen, H., Burnett, J., Zhang, F., Zhang, J., Paholak, H., & Sun, D. (2014). Highly crystallized iron oxide nanoparticles as effective and biodegradable mediators for photothermal cancer therapy. J. Mater. Chem. B, 2(7), 757-765. doi:10.1039/c3tb21338b

Liao, M.-Y., Lai, P.-S., Yu, H.-P., Lin, H.-P., & Huang, C.-C. (2012). Innovative ligand-assisted synthesis of NIR-activated iron oxide for cancer theranostics. Chemical Communications, 48(43), 5319. doi:10.1039/c2cc31448g

Zhou, Z., Sun, Y., Shen, J., Wei, J., Yu, C., Kong, B., … Wang, W. (2014). Iron/iron oxide core/shell nanoparticles for magnetic targeting MRI and near-infrared photothermal therapy. Biomaterials, 35(26), 7470-7478. doi:10.1016/j.biomaterials.2014.04.063

Shen, S., Wang, S., Zheng, R., Zhu, X., Jiang, X., Fu, D., & Yang, W. (2015). Magnetic nanoparticle clusters for photothermal therapy with near-infrared irradiation. Biomaterials, 39, 67-74. doi:10.1016/j.biomaterials.2014.10.064

Wang, J., Zhao, H., Zhou, Z., Zhou, P., Yan, Y., Wang, M., … Yang, S. (2016). MR/SPECT Imaging Guided Photothermal Therapy of Tumor-Targeting Fe@Fe3O4 Nanoparticles in Vivo with Low Mononuclear Phagocyte Uptake. ACS Applied Materials & Interfaces, 8(31), 19872-19882. doi:10.1021/acsami.6b04639

Chu, M., Shao, Y., Peng, J., Dai, X., Li, H., Wu, Q., & Shi, D. (2013). Near-infrared laser light mediated cancer therapy by photothermal effect of Fe3O4 magnetic nanoparticles. Biomaterials, 34(16), 4078-4088. doi:10.1016/j.biomaterials.2013.01.086

Peng, H., Tang, J., Zheng, R., Guo, G., Dong, A., Wang, Y., & Yang, W. (2017). Nuclear-Targeted Multifunctional Magnetic Nanoparticles for Photothermal Therapy. Advanced Healthcare Materials, 6(7), 1601289. doi:10.1002/adhm.201601289

Ortgies, D. H., Teran, F. J., Rocha, U., de la Cueva, L., Salas, G., Cabrera, D., … Jaque, D. (2018). Optomagnetic Nanoplatforms for In Situ Controlled Hyperthermia. Advanced Functional Materials, 28(11), 1704434. doi:10.1002/adfm.201704434

Ren, X., Zheng, R., Fang, X., Wang, X., Zhang, X., Yang, W., & Sha, X. (2016). Red blood cell membrane camouflaged magnetic nanoclusters for imaging-guided photothermal therapy. Biomaterials, 92, 13-24. doi:10.1016/j.biomaterials.2016.03.026

Hemmer, E., Venkatachalam, N., Hyodo, H., Hattori, A., Ebina, Y., Kishimoto, H., & Soga, K. (2013). Upconverting and NIR emitting rare earth based nanostructures for NIR-bioimaging. Nanoscale, 5(23), 11339. doi:10.1039/c3nr02286b

Anderson, R. R., & Parrish, J. A. (1981). The Optics of Human Skin. Journal of Investigative Dermatology, 77(1), 13-19. doi:10.1111/1523-1747.ep12479191

Southern, P., & Pankhurst, Q. A. (2017). Commentary on the clinical and preclinical dosage limits of interstitially administered magnetic fluids for therapeutic hyperthermia based on current practice and efficacy models. International Journal of Hyperthermia, 34(6), 671-686. doi:10.1080/02656736.2017.1365953

Dias, J. T., Moros, M., del Pino, P., Rivera, S., Grazú, V., & de la Fuente, J. M. (2013). DNA as a Molecular Local Thermal Probe for the Analysis of Magnetic Hyperthermia. Angewandte Chemie International Edition, 52(44), 11526-11529. doi:10.1002/anie.201305835

Riedinger, A., Guardia, P., Curcio, A., Garcia, M. A., Cingolani, R., Manna, L., & Pellegrino, T. (2013). Subnanometer Local Temperature Probing and Remotely Controlled Drug Release Based on Azo-Functionalized Iron Oxide Nanoparticles. Nano Letters, 13(6), 2399-2406. doi:10.1021/nl400188q

Piñol, R., Brites, C. D. S., Bustamante, R., Martínez, A., Silva, N. J. O., Murillo, J. L., … Millán, A. (2015). Joining Time-Resolved Thermometry and Magnetic-Induced Heating in a Single Nanoparticle Unveils Intriguing Thermal Properties. ACS Nano, 9(3), 3134-3142. doi:10.1021/acsnano.5b00059

Bendix, P. M., Reihani, S. N. S., & Oddershede, L. B. (2010). Direct Measurements of Heating by Electromagnetically Trapped Gold Nanoparticles on Supported Lipid Bilayers. ACS Nano, 4(4), 2256-2262. doi:10.1021/nn901751w

Urban, A. S., Fedoruk, M., Horton, M. R., Rädler, J. O., Stefani, F. D., & Feldmann, J. (2009). Controlled Nanometric Phase Transitions of Phospholipid Membranes by Plasmonic Heating of Single Gold Nanoparticles. Nano Letters, 9(8), 2903-2908. doi:10.1021/nl901201h

Rodríguez-Rodríguez, H., de Lorenzo, S., de la Cueva, L., Salas, G., & Arias-Gonzalez, J. R. (2018). Optical Trapping of Single Nanostructures in a Weakly Focused Beam. Application to Magnetic Nanoparticles. The Journal of Physical Chemistry C, 122(31), 18094-18101. doi:10.1021/acs.jpcc.8b04676

Schlegel, A., Alvarado, S. F., & Wachter, P. (1979). Optical properties of magnetite (Fe3O4). Journal of Physics C: Solid State Physics, 12(6), 1157-1164. doi:10.1088/0022-3719/12/6/027

Johnson, P. B., & Christy, R. W. (1972). Optical Constants of the Noble Metals. Physical Review B, 6(12), 4370-4379. doi:10.1103/physrevb.6.4370

Hormeño, S., Gregorio-Godoy, P., Pérez-Juste, J., Liz-Marzán, L. M., Juárez, B. H., & Arias-Gonzalez, J. R. (2013). Laser Heating Tunability by Off-Resonant Irradiation of Gold Nanoparticles. Small, 10(2), 376-384. doi:10.1002/smll.201301912

Aden, A. L., & Kerker, M. (1951). Scattering of Electromagnetic Waves from Two Concentric Spheres. Journal of Applied Physics, 22(10), 1242-1246. doi:10.1063/1.1699834

De Lorenzo, S., Ribezzi-Crivellari, M., Arias-Gonzalez, J. R., Smith, S. B., & Ritort, F. (2015). A Temperature-Jump Optical Trap for Single-Molecule Manipulation. Biophysical Journal, 108(12), 2854-2864. doi:10.1016/j.bpj.2015.05.017

Hormeño, S., Bastús, N. G., Pietsch, A., Weller, H., Arias-Gonzalez, J. R., & Juárez, B. H. (2011). Plasmon-Exciton Interactions on Single Thermoresponsive Platforms Demonstrated by Optical Tweezers. Nano Letters, 11(11), 4742-4747. doi:10.1021/nl202560j

Rodríguez-Rodríguez, H., Acebrón, M., Juárez, B. H., & Arias-Gonzalez, J. R. (2017). Luminescence Dynamics of Silica-Encapsulated Quantum Dots During Optical Trapping. The Journal of Physical Chemistry C, 121(18), 10124-10130. doi:10.1021/acs.jpcc.6b11867

Hormeño, S., Ibarra, B., Chichón, F. J., Habermann, K., Lange, B. M. H., Valpuesta, J. M., … Arias-Gonzalez, J. R. (2009). Single Centrosome Manipulation Reveals Its Electric Charge and Associated Dynamic Structure. Biophysical Journal, 97(4), 1022-1030. doi:10.1016/j.bpj.2009.06.004

Mao, H., Ricardo Arias-Gonzalez, J., Smith, S. B., Tinoco, I., & Bustamante, C. (2005). Temperature Control Methods in a Laser Tweezers System. Biophysical Journal, 89(2), 1308-1316. doi:10.1529/biophysj.104.054536

Peterman, E. J. G., Gittes, F., & Schmidt, C. F. (2003). Laser-Induced Heating in Optical Traps. Biophysical Journal, 84(2), 1308-1316. doi:10.1016/s0006-3495(03)74946-7

Català, F., Marsà, F., Montes-Usategui, M., Farré, A., & Martín-Badosa, E. (2017). Influence of experimental parameters on the laser heating of an optical trap. Scientific Reports, 7(1). doi:10.1038/s41598-017-15904-6

Govorov, A. O., Zhang, W., Skeini, T., Richardson, H., Lee, J., & Kotov, N. A. (2006). Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances. Nanoscale Research Letters, 1(1). doi:10.1007/s11671-006-9015-7

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem