Mohammed, L., Gomaa, H. G., Ragab, D., & Zhu, J. (2017). Magnetic nanoparticles for environmental and biomedical applications: A review. Particuology, 30, 1-14. doi:10.1016/j.partic.2016.06.001
Beik, J., Abed, Z., Ghoreishi, F. S., Hosseini-Nami, S., Mehrzadi, S., Shakeri-Zadeh, A., & Kamrava, S. K. (2016). Nanotechnology in hyperthermia cancer therapy: From fundamental principles to advanced applications. Journal of Controlled Release, 235, 205-221. doi:10.1016/j.jconrel.2016.05.062
Jaque, D., Martínez Maestro, L., del Rosal, B., Haro-Gonzalez, P., Benayas, A., Plaza, J. L., … García Solé, J. (2014). Nanoparticles for photothermal therapies. Nanoscale, 6(16), 9494-9530. doi:10.1039/c4nr00708e
[+]
Mohammed, L., Gomaa, H. G., Ragab, D., & Zhu, J. (2017). Magnetic nanoparticles for environmental and biomedical applications: A review. Particuology, 30, 1-14. doi:10.1016/j.partic.2016.06.001
Beik, J., Abed, Z., Ghoreishi, F. S., Hosseini-Nami, S., Mehrzadi, S., Shakeri-Zadeh, A., & Kamrava, S. K. (2016). Nanotechnology in hyperthermia cancer therapy: From fundamental principles to advanced applications. Journal of Controlled Release, 235, 205-221. doi:10.1016/j.jconrel.2016.05.062
Jaque, D., Martínez Maestro, L., del Rosal, B., Haro-Gonzalez, P., Benayas, A., Plaza, J. L., … García Solé, J. (2014). Nanoparticles for photothermal therapies. Nanoscale, 6(16), 9494-9530. doi:10.1039/c4nr00708e
Ling, D., Lee, N., & Hyeon, T. (2015). Chemical Synthesis and Assembly of Uniformly Sized Iron Oxide Nanoparticles for Medical Applications. Accounts of Chemical Research, 48(5), 1276-1285. doi:10.1021/acs.accounts.5b00038
Stanicki, D., Elst, L. V., Muller, R. N., & Laurent, S. (2015). Synthesis and processing of magnetic nanoparticles. Current Opinion in Chemical Engineering, 8, 7-14. doi:10.1016/j.coche.2015.01.003
Jin, R., Lin, B., Li, D., & Ai, H. (2014). Superparamagnetic iron oxide nanoparticles for MR imaging and therapy: design considerations and clinical applications. Current Opinion in Pharmacology, 18, 18-27. doi:10.1016/j.coph.2014.08.002
Singh, D., McMillan, J. M., Kabanov, A. V., Sokolsky-Papkov, M., & Gendelman, H. E. (2014). Bench-to-bedside translation of magnetic nanoparticles. Nanomedicine, 9(4), 501-516. doi:10.2217/nnm.14.5
Weissig, V., Pettinger, T., & Murdock, N. (2014). Nanopharmaceuticals (part 1): products on the market. International Journal of Nanomedicine, 4357. doi:10.2147/ijn.s46900
Mosayebi, J., Kiyasatfar, M., & Laurent, S. (2017). Synthesis, Functionalization, and Design of Magnetic Nanoparticles for Theranostic Applications. Advanced Healthcare Materials, 6(23), 1700306. doi:10.1002/adhm.201700306
Shen, S., Kong, F., Guo, X., Wu, L., Shen, H., Xie, M., … Ge, Y. (2013). CMCTS stabilized Fe3O4 particles with extremely low toxicity as highly efficient near-infrared photothermal agents for in vivo tumor ablation. Nanoscale, 5(17), 8056. doi:10.1039/c3nr01447a
Espinosa, A., Di Corato, R., Kolosnjaj-Tabi, J., Flaud, P., Pellegrino, T., & Wilhelm, C. (2016). Duality of Iron Oxide Nanoparticles in Cancer Therapy: Amplification of Heating Efficiency by Magnetic Hyperthermia and Photothermal Bimodal Treatment. ACS Nano, 10(2), 2436-2446. doi:10.1021/acsnano.5b07249
Chen, H., Burnett, J., Zhang, F., Zhang, J., Paholak, H., & Sun, D. (2014). Highly crystallized iron oxide nanoparticles as effective and biodegradable mediators for photothermal cancer therapy. J. Mater. Chem. B, 2(7), 757-765. doi:10.1039/c3tb21338b
Liao, M.-Y., Lai, P.-S., Yu, H.-P., Lin, H.-P., & Huang, C.-C. (2012). Innovative ligand-assisted synthesis of NIR-activated iron oxide for cancer theranostics. Chemical Communications, 48(43), 5319. doi:10.1039/c2cc31448g
Zhou, Z., Sun, Y., Shen, J., Wei, J., Yu, C., Kong, B., … Wang, W. (2014). Iron/iron oxide core/shell nanoparticles for magnetic targeting MRI and near-infrared photothermal therapy. Biomaterials, 35(26), 7470-7478. doi:10.1016/j.biomaterials.2014.04.063
Shen, S., Wang, S., Zheng, R., Zhu, X., Jiang, X., Fu, D., & Yang, W. (2015). Magnetic nanoparticle clusters for photothermal therapy with near-infrared irradiation. Biomaterials, 39, 67-74. doi:10.1016/j.biomaterials.2014.10.064
Wang, J., Zhao, H., Zhou, Z., Zhou, P., Yan, Y., Wang, M., … Yang, S. (2016). MR/SPECT Imaging Guided Photothermal Therapy of Tumor-Targeting Fe@Fe3O4 Nanoparticles in Vivo with Low Mononuclear Phagocyte Uptake. ACS Applied Materials & Interfaces, 8(31), 19872-19882. doi:10.1021/acsami.6b04639
Chu, M., Shao, Y., Peng, J., Dai, X., Li, H., Wu, Q., & Shi, D. (2013). Near-infrared laser light mediated cancer therapy by photothermal effect of Fe3O4 magnetic nanoparticles. Biomaterials, 34(16), 4078-4088. doi:10.1016/j.biomaterials.2013.01.086
Peng, H., Tang, J., Zheng, R., Guo, G., Dong, A., Wang, Y., & Yang, W. (2017). Nuclear-Targeted Multifunctional Magnetic Nanoparticles for Photothermal Therapy. Advanced Healthcare Materials, 6(7), 1601289. doi:10.1002/adhm.201601289
Ortgies, D. H., Teran, F. J., Rocha, U., de la Cueva, L., Salas, G., Cabrera, D., … Jaque, D. (2018). Optomagnetic Nanoplatforms for In Situ Controlled Hyperthermia. Advanced Functional Materials, 28(11), 1704434. doi:10.1002/adfm.201704434
Ren, X., Zheng, R., Fang, X., Wang, X., Zhang, X., Yang, W., & Sha, X. (2016). Red blood cell membrane camouflaged magnetic nanoclusters for imaging-guided photothermal therapy. Biomaterials, 92, 13-24. doi:10.1016/j.biomaterials.2016.03.026
Hemmer, E., Venkatachalam, N., Hyodo, H., Hattori, A., Ebina, Y., Kishimoto, H., & Soga, K. (2013). Upconverting and NIR emitting rare earth based nanostructures for NIR-bioimaging. Nanoscale, 5(23), 11339. doi:10.1039/c3nr02286b
Anderson, R. R., & Parrish, J. A. (1981). The Optics of Human Skin. Journal of Investigative Dermatology, 77(1), 13-19. doi:10.1111/1523-1747.ep12479191
Southern, P., & Pankhurst, Q. A. (2017). Commentary on the clinical and preclinical dosage limits of interstitially administered magnetic fluids for therapeutic hyperthermia based on current practice and efficacy models. International Journal of Hyperthermia, 34(6), 671-686. doi:10.1080/02656736.2017.1365953
Dias, J. T., Moros, M., del Pino, P., Rivera, S., Grazú, V., & de la Fuente, J. M. (2013). DNA as a Molecular Local Thermal Probe for the Analysis of Magnetic Hyperthermia. Angewandte Chemie International Edition, 52(44), 11526-11529. doi:10.1002/anie.201305835
Riedinger, A., Guardia, P., Curcio, A., Garcia, M. A., Cingolani, R., Manna, L., & Pellegrino, T. (2013). Subnanometer Local Temperature Probing and Remotely Controlled Drug Release Based on Azo-Functionalized Iron Oxide Nanoparticles. Nano Letters, 13(6), 2399-2406. doi:10.1021/nl400188q
Piñol, R., Brites, C. D. S., Bustamante, R., Martínez, A., Silva, N. J. O., Murillo, J. L., … Millán, A. (2015). Joining Time-Resolved Thermometry and Magnetic-Induced Heating in a Single Nanoparticle Unveils Intriguing Thermal Properties. ACS Nano, 9(3), 3134-3142. doi:10.1021/acsnano.5b00059
Bendix, P. M., Reihani, S. N. S., & Oddershede, L. B. (2010). Direct Measurements of Heating by Electromagnetically Trapped Gold Nanoparticles on Supported Lipid Bilayers. ACS Nano, 4(4), 2256-2262. doi:10.1021/nn901751w
Urban, A. S., Fedoruk, M., Horton, M. R., Rädler, J. O., Stefani, F. D., & Feldmann, J. (2009). Controlled Nanometric Phase Transitions of Phospholipid Membranes by Plasmonic Heating of Single Gold Nanoparticles. Nano Letters, 9(8), 2903-2908. doi:10.1021/nl901201h
Rodríguez-Rodríguez, H., de Lorenzo, S., de la Cueva, L., Salas, G., & Arias-Gonzalez, J. R. (2018). Optical Trapping of Single Nanostructures in a Weakly Focused Beam. Application to Magnetic Nanoparticles. The Journal of Physical Chemistry C, 122(31), 18094-18101. doi:10.1021/acs.jpcc.8b04676
Schlegel, A., Alvarado, S. F., & Wachter, P. (1979). Optical properties of magnetite (Fe3O4). Journal of Physics C: Solid State Physics, 12(6), 1157-1164. doi:10.1088/0022-3719/12/6/027
Johnson, P. B., & Christy, R. W. (1972). Optical Constants of the Noble Metals. Physical Review B, 6(12), 4370-4379. doi:10.1103/physrevb.6.4370
Hormeño, S., Gregorio-Godoy, P., Pérez-Juste, J., Liz-Marzán, L. M., Juárez, B. H., & Arias-Gonzalez, J. R. (2013). Laser Heating Tunability by Off-Resonant Irradiation of Gold Nanoparticles. Small, 10(2), 376-384. doi:10.1002/smll.201301912
Aden, A. L., & Kerker, M. (1951). Scattering of Electromagnetic Waves from Two Concentric Spheres. Journal of Applied Physics, 22(10), 1242-1246. doi:10.1063/1.1699834
De Lorenzo, S., Ribezzi-Crivellari, M., Arias-Gonzalez, J. R., Smith, S. B., & Ritort, F. (2015). A Temperature-Jump Optical Trap for Single-Molecule Manipulation. Biophysical Journal, 108(12), 2854-2864. doi:10.1016/j.bpj.2015.05.017
Hormeño, S., Bastús, N. G., Pietsch, A., Weller, H., Arias-Gonzalez, J. R., & Juárez, B. H. (2011). Plasmon-Exciton Interactions on Single Thermoresponsive Platforms Demonstrated by Optical Tweezers. Nano Letters, 11(11), 4742-4747. doi:10.1021/nl202560j
Rodríguez-Rodríguez, H., Acebrón, M., Juárez, B. H., & Arias-Gonzalez, J. R. (2017). Luminescence Dynamics of Silica-Encapsulated Quantum Dots During Optical Trapping. The Journal of Physical Chemistry C, 121(18), 10124-10130. doi:10.1021/acs.jpcc.6b11867
Hormeño, S., Ibarra, B., Chichón, F. J., Habermann, K., Lange, B. M. H., Valpuesta, J. M., … Arias-Gonzalez, J. R. (2009). Single Centrosome Manipulation Reveals Its Electric Charge and Associated Dynamic Structure. Biophysical Journal, 97(4), 1022-1030. doi:10.1016/j.bpj.2009.06.004
Mao, H., Ricardo Arias-Gonzalez, J., Smith, S. B., Tinoco, I., & Bustamante, C. (2005). Temperature Control Methods in a Laser Tweezers System. Biophysical Journal, 89(2), 1308-1316. doi:10.1529/biophysj.104.054536
Peterman, E. J. G., Gittes, F., & Schmidt, C. F. (2003). Laser-Induced Heating in Optical Traps. Biophysical Journal, 84(2), 1308-1316. doi:10.1016/s0006-3495(03)74946-7
Català, F., Marsà, F., Montes-Usategui, M., Farré, A., & Martín-Badosa, E. (2017). Influence of experimental parameters on the laser heating of an optical trap. Scientific Reports, 7(1). doi:10.1038/s41598-017-15904-6
Govorov, A. O., Zhang, W., Skeini, T., Richardson, H., Lee, J., & Kotov, N. A. (2006). Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances. Nanoscale Research Letters, 1(1). doi:10.1007/s11671-006-9015-7
[-]