Mostrar el registro sencillo del ítem
dc.contributor.author | Rodríguez-Rodríguez, Héctor | es_ES |
dc.contributor.author | Salas, Gorka | es_ES |
dc.contributor.author | Arias-Gonzalez, J. R. | es_ES |
dc.date.accessioned | 2021-02-06T04:33:10Z | |
dc.date.available | 2021-02-06T04:33:10Z | |
dc.date.issued | 2020-03-19 | es_ES |
dc.identifier.issn | 1948-7185 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/160813 | |
dc.description.abstract | [EN] Heat generation by pointlike structures is an appealing concept for its implications in nanotechnology and biomedicine. The way to pump energy that excites heat locally and the synthesis of nanostructures that absorb such energy are key issues in this endeavor. High-frequency alternating magnetic or near-infrared optical fields are used to induce heat in iron oxide nanoparticles, a combined solution that is being exploited in hyperthermia treatments. However, the temperature determination around a single iron oxide nanoparticle remains a challenge. We study the heat released from iron oxide nanostructures under near-infrared illumination on a one-by-one basis by optical tweezers. To measure the temperature, we follow the medium viscosity changes around the trapped particle as a function of the illuminating power, thus avoiding the use of thermal probes. Our results help interpret temperature, a statistical parameter, in the nanoscale and the concept of heat production by nanoparticles under thermal agitation. | es_ES |
dc.description.sponsorship | This work was supported by the Spanish Ministry of Science, Innovation and Universities (Grant MAT2015-71806-R). IMDEA Nanociencia acknowledges support from the "Severo Ochoa" Programme for Centers of Excellence in R&D (SEV-2016-0686). H.R-R. is supported by an FPI-UAM 2015 fellowship. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | American Chemical Society | es_ES |
dc.relation.ispartof | The Journal of Physical Chemistry Letters | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Nanoparticle | es_ES |
dc.subject | Hyperthermia | es_ES |
dc.subject | Magnetic | es_ES |
dc.subject | Optical tweezers | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | Heat Generation in Single Magnetic Nanoparticles under Near-Infrared Irradiation | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1021/acs.jpclett.0c00143 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MAT2015-71806-R/ES/INFLUENCIA DEL CALOR EMITIDO POR NANOPARTICULAS MAGNETICAS SOBRE BIOMOLECULAS DETERMINADO MEDIANTE PINZAS OPTICAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SEV-2016-0686/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.description.bibliographicCitation | Rodríguez-Rodríguez, H.; Salas, G.; Arias-Gonzalez, JR. (2020). Heat Generation in Single Magnetic Nanoparticles under Near-Infrared Irradiation. The Journal of Physical Chemistry Letters. 11(6):2182-2187. https://doi.org/10.1021/acs.jpclett.0c00143 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1021/acs.jpclett.0c00143 | es_ES |
dc.description.upvformatpinicio | 2182 | es_ES |
dc.description.upvformatpfin | 2187 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 11 | es_ES |
dc.description.issue | 6 | es_ES |
dc.identifier.pmid | 32119551 | es_ES |
dc.relation.pasarela | S\407942 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Mohammed, L., Gomaa, H. G., Ragab, D., & Zhu, J. (2017). Magnetic nanoparticles for environmental and biomedical applications: A review. Particuology, 30, 1-14. doi:10.1016/j.partic.2016.06.001 | es_ES |
dc.description.references | Beik, J., Abed, Z., Ghoreishi, F. S., Hosseini-Nami, S., Mehrzadi, S., Shakeri-Zadeh, A., & Kamrava, S. K. (2016). Nanotechnology in hyperthermia cancer therapy: From fundamental principles to advanced applications. Journal of Controlled Release, 235, 205-221. doi:10.1016/j.jconrel.2016.05.062 | es_ES |
dc.description.references | Jaque, D., Martínez Maestro, L., del Rosal, B., Haro-Gonzalez, P., Benayas, A., Plaza, J. L., … García Solé, J. (2014). Nanoparticles for photothermal therapies. Nanoscale, 6(16), 9494-9530. doi:10.1039/c4nr00708e | es_ES |
dc.description.references | Ling, D., Lee, N., & Hyeon, T. (2015). Chemical Synthesis and Assembly of Uniformly Sized Iron Oxide Nanoparticles for Medical Applications. Accounts of Chemical Research, 48(5), 1276-1285. doi:10.1021/acs.accounts.5b00038 | es_ES |
dc.description.references | Stanicki, D., Elst, L. V., Muller, R. N., & Laurent, S. (2015). Synthesis and processing of magnetic nanoparticles. Current Opinion in Chemical Engineering, 8, 7-14. doi:10.1016/j.coche.2015.01.003 | es_ES |
dc.description.references | Jin, R., Lin, B., Li, D., & Ai, H. (2014). Superparamagnetic iron oxide nanoparticles for MR imaging and therapy: design considerations and clinical applications. Current Opinion in Pharmacology, 18, 18-27. doi:10.1016/j.coph.2014.08.002 | es_ES |
dc.description.references | Singh, D., McMillan, J. M., Kabanov, A. V., Sokolsky-Papkov, M., & Gendelman, H. E. (2014). Bench-to-bedside translation of magnetic nanoparticles. Nanomedicine, 9(4), 501-516. doi:10.2217/nnm.14.5 | es_ES |
dc.description.references | Weissig, V., Pettinger, T., & Murdock, N. (2014). Nanopharmaceuticals (part 1): products on the market. International Journal of Nanomedicine, 4357. doi:10.2147/ijn.s46900 | es_ES |
dc.description.references | Mosayebi, J., Kiyasatfar, M., & Laurent, S. (2017). Synthesis, Functionalization, and Design of Magnetic Nanoparticles for Theranostic Applications. Advanced Healthcare Materials, 6(23), 1700306. doi:10.1002/adhm.201700306 | es_ES |
dc.description.references | Shen, S., Kong, F., Guo, X., Wu, L., Shen, H., Xie, M., … Ge, Y. (2013). CMCTS stabilized Fe3O4 particles with extremely low toxicity as highly efficient near-infrared photothermal agents for in vivo tumor ablation. Nanoscale, 5(17), 8056. doi:10.1039/c3nr01447a | es_ES |
dc.description.references | Espinosa, A., Di Corato, R., Kolosnjaj-Tabi, J., Flaud, P., Pellegrino, T., & Wilhelm, C. (2016). Duality of Iron Oxide Nanoparticles in Cancer Therapy: Amplification of Heating Efficiency by Magnetic Hyperthermia and Photothermal Bimodal Treatment. ACS Nano, 10(2), 2436-2446. doi:10.1021/acsnano.5b07249 | es_ES |
dc.description.references | Chen, H., Burnett, J., Zhang, F., Zhang, J., Paholak, H., & Sun, D. (2014). Highly crystallized iron oxide nanoparticles as effective and biodegradable mediators for photothermal cancer therapy. J. Mater. Chem. B, 2(7), 757-765. doi:10.1039/c3tb21338b | es_ES |
dc.description.references | Liao, M.-Y., Lai, P.-S., Yu, H.-P., Lin, H.-P., & Huang, C.-C. (2012). Innovative ligand-assisted synthesis of NIR-activated iron oxide for cancer theranostics. Chemical Communications, 48(43), 5319. doi:10.1039/c2cc31448g | es_ES |
dc.description.references | Zhou, Z., Sun, Y., Shen, J., Wei, J., Yu, C., Kong, B., … Wang, W. (2014). Iron/iron oxide core/shell nanoparticles for magnetic targeting MRI and near-infrared photothermal therapy. Biomaterials, 35(26), 7470-7478. doi:10.1016/j.biomaterials.2014.04.063 | es_ES |
dc.description.references | Shen, S., Wang, S., Zheng, R., Zhu, X., Jiang, X., Fu, D., & Yang, W. (2015). Magnetic nanoparticle clusters for photothermal therapy with near-infrared irradiation. Biomaterials, 39, 67-74. doi:10.1016/j.biomaterials.2014.10.064 | es_ES |
dc.description.references | Wang, J., Zhao, H., Zhou, Z., Zhou, P., Yan, Y., Wang, M., … Yang, S. (2016). MR/SPECT Imaging Guided Photothermal Therapy of Tumor-Targeting Fe@Fe3O4 Nanoparticles in Vivo with Low Mononuclear Phagocyte Uptake. ACS Applied Materials & Interfaces, 8(31), 19872-19882. doi:10.1021/acsami.6b04639 | es_ES |
dc.description.references | Chu, M., Shao, Y., Peng, J., Dai, X., Li, H., Wu, Q., & Shi, D. (2013). Near-infrared laser light mediated cancer therapy by photothermal effect of Fe3O4 magnetic nanoparticles. Biomaterials, 34(16), 4078-4088. doi:10.1016/j.biomaterials.2013.01.086 | es_ES |
dc.description.references | Peng, H., Tang, J., Zheng, R., Guo, G., Dong, A., Wang, Y., & Yang, W. (2017). Nuclear-Targeted Multifunctional Magnetic Nanoparticles for Photothermal Therapy. Advanced Healthcare Materials, 6(7), 1601289. doi:10.1002/adhm.201601289 | es_ES |
dc.description.references | Ortgies, D. H., Teran, F. J., Rocha, U., de la Cueva, L., Salas, G., Cabrera, D., … Jaque, D. (2018). Optomagnetic Nanoplatforms for In Situ Controlled Hyperthermia. Advanced Functional Materials, 28(11), 1704434. doi:10.1002/adfm.201704434 | es_ES |
dc.description.references | Ren, X., Zheng, R., Fang, X., Wang, X., Zhang, X., Yang, W., & Sha, X. (2016). Red blood cell membrane camouflaged magnetic nanoclusters for imaging-guided photothermal therapy. Biomaterials, 92, 13-24. doi:10.1016/j.biomaterials.2016.03.026 | es_ES |
dc.description.references | Hemmer, E., Venkatachalam, N., Hyodo, H., Hattori, A., Ebina, Y., Kishimoto, H., & Soga, K. (2013). Upconverting and NIR emitting rare earth based nanostructures for NIR-bioimaging. Nanoscale, 5(23), 11339. doi:10.1039/c3nr02286b | es_ES |
dc.description.references | Anderson, R. R., & Parrish, J. A. (1981). The Optics of Human Skin. Journal of Investigative Dermatology, 77(1), 13-19. doi:10.1111/1523-1747.ep12479191 | es_ES |
dc.description.references | Southern, P., & Pankhurst, Q. A. (2017). Commentary on the clinical and preclinical dosage limits of interstitially administered magnetic fluids for therapeutic hyperthermia based on current practice and efficacy models. International Journal of Hyperthermia, 34(6), 671-686. doi:10.1080/02656736.2017.1365953 | es_ES |
dc.description.references | Dias, J. T., Moros, M., del Pino, P., Rivera, S., Grazú, V., & de la Fuente, J. M. (2013). DNA as a Molecular Local Thermal Probe for the Analysis of Magnetic Hyperthermia. Angewandte Chemie International Edition, 52(44), 11526-11529. doi:10.1002/anie.201305835 | es_ES |
dc.description.references | Riedinger, A., Guardia, P., Curcio, A., Garcia, M. A., Cingolani, R., Manna, L., & Pellegrino, T. (2013). Subnanometer Local Temperature Probing and Remotely Controlled Drug Release Based on Azo-Functionalized Iron Oxide Nanoparticles. Nano Letters, 13(6), 2399-2406. doi:10.1021/nl400188q | es_ES |
dc.description.references | Piñol, R., Brites, C. D. S., Bustamante, R., Martínez, A., Silva, N. J. O., Murillo, J. L., … Millán, A. (2015). Joining Time-Resolved Thermometry and Magnetic-Induced Heating in a Single Nanoparticle Unveils Intriguing Thermal Properties. ACS Nano, 9(3), 3134-3142. doi:10.1021/acsnano.5b00059 | es_ES |
dc.description.references | Bendix, P. M., Reihani, S. N. S., & Oddershede, L. B. (2010). Direct Measurements of Heating by Electromagnetically Trapped Gold Nanoparticles on Supported Lipid Bilayers. ACS Nano, 4(4), 2256-2262. doi:10.1021/nn901751w | es_ES |
dc.description.references | Urban, A. S., Fedoruk, M., Horton, M. R., Rädler, J. O., Stefani, F. D., & Feldmann, J. (2009). Controlled Nanometric Phase Transitions of Phospholipid Membranes by Plasmonic Heating of Single Gold Nanoparticles. Nano Letters, 9(8), 2903-2908. doi:10.1021/nl901201h | es_ES |
dc.description.references | Rodríguez-Rodríguez, H., de Lorenzo, S., de la Cueva, L., Salas, G., & Arias-Gonzalez, J. R. (2018). Optical Trapping of Single Nanostructures in a Weakly Focused Beam. Application to Magnetic Nanoparticles. The Journal of Physical Chemistry C, 122(31), 18094-18101. doi:10.1021/acs.jpcc.8b04676 | es_ES |
dc.description.references | Schlegel, A., Alvarado, S. F., & Wachter, P. (1979). Optical properties of magnetite (Fe3O4). Journal of Physics C: Solid State Physics, 12(6), 1157-1164. doi:10.1088/0022-3719/12/6/027 | es_ES |
dc.description.references | Johnson, P. B., & Christy, R. W. (1972). Optical Constants of the Noble Metals. Physical Review B, 6(12), 4370-4379. doi:10.1103/physrevb.6.4370 | es_ES |
dc.description.references | Hormeño, S., Gregorio-Godoy, P., Pérez-Juste, J., Liz-Marzán, L. M., Juárez, B. H., & Arias-Gonzalez, J. R. (2013). Laser Heating Tunability by Off-Resonant Irradiation of Gold Nanoparticles. Small, 10(2), 376-384. doi:10.1002/smll.201301912 | es_ES |
dc.description.references | Aden, A. L., & Kerker, M. (1951). Scattering of Electromagnetic Waves from Two Concentric Spheres. Journal of Applied Physics, 22(10), 1242-1246. doi:10.1063/1.1699834 | es_ES |
dc.description.references | De Lorenzo, S., Ribezzi-Crivellari, M., Arias-Gonzalez, J. R., Smith, S. B., & Ritort, F. (2015). A Temperature-Jump Optical Trap for Single-Molecule Manipulation. Biophysical Journal, 108(12), 2854-2864. doi:10.1016/j.bpj.2015.05.017 | es_ES |
dc.description.references | Hormeño, S., Bastús, N. G., Pietsch, A., Weller, H., Arias-Gonzalez, J. R., & Juárez, B. H. (2011). Plasmon-Exciton Interactions on Single Thermoresponsive Platforms Demonstrated by Optical Tweezers. Nano Letters, 11(11), 4742-4747. doi:10.1021/nl202560j | es_ES |
dc.description.references | Rodríguez-Rodríguez, H., Acebrón, M., Juárez, B. H., & Arias-Gonzalez, J. R. (2017). Luminescence Dynamics of Silica-Encapsulated Quantum Dots During Optical Trapping. The Journal of Physical Chemistry C, 121(18), 10124-10130. doi:10.1021/acs.jpcc.6b11867 | es_ES |
dc.description.references | Hormeño, S., Ibarra, B., Chichón, F. J., Habermann, K., Lange, B. M. H., Valpuesta, J. M., … Arias-Gonzalez, J. R. (2009). Single Centrosome Manipulation Reveals Its Electric Charge and Associated Dynamic Structure. Biophysical Journal, 97(4), 1022-1030. doi:10.1016/j.bpj.2009.06.004 | es_ES |
dc.description.references | Mao, H., Ricardo Arias-Gonzalez, J., Smith, S. B., Tinoco, I., & Bustamante, C. (2005). Temperature Control Methods in a Laser Tweezers System. Biophysical Journal, 89(2), 1308-1316. doi:10.1529/biophysj.104.054536 | es_ES |
dc.description.references | Peterman, E. J. G., Gittes, F., & Schmidt, C. F. (2003). Laser-Induced Heating in Optical Traps. Biophysical Journal, 84(2), 1308-1316. doi:10.1016/s0006-3495(03)74946-7 | es_ES |
dc.description.references | Català, F., Marsà, F., Montes-Usategui, M., Farré, A., & Martín-Badosa, E. (2017). Influence of experimental parameters on the laser heating of an optical trap. Scientific Reports, 7(1). doi:10.1038/s41598-017-15904-6 | es_ES |
dc.description.references | Govorov, A. O., Zhang, W., Skeini, T., Richardson, H., Lee, J., & Kotov, N. A. (2006). Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances. Nanoscale Research Letters, 1(1). doi:10.1007/s11671-006-9015-7 | es_ES |