- -

Heat Generation in Single Magnetic Nanoparticles under Near-Infrared Irradiation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Heat Generation in Single Magnetic Nanoparticles under Near-Infrared Irradiation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Rodríguez-Rodríguez, Héctor es_ES
dc.contributor.author Salas, Gorka es_ES
dc.contributor.author Arias-Gonzalez, J. R. es_ES
dc.date.accessioned 2021-02-06T04:33:10Z
dc.date.available 2021-02-06T04:33:10Z
dc.date.issued 2020-03-19 es_ES
dc.identifier.issn 1948-7185 es_ES
dc.identifier.uri http://hdl.handle.net/10251/160813
dc.description.abstract [EN] Heat generation by pointlike structures is an appealing concept for its implications in nanotechnology and biomedicine. The way to pump energy that excites heat locally and the synthesis of nanostructures that absorb such energy are key issues in this endeavor. High-frequency alternating magnetic or near-infrared optical fields are used to induce heat in iron oxide nanoparticles, a combined solution that is being exploited in hyperthermia treatments. However, the temperature determination around a single iron oxide nanoparticle remains a challenge. We study the heat released from iron oxide nanostructures under near-infrared illumination on a one-by-one basis by optical tweezers. To measure the temperature, we follow the medium viscosity changes around the trapped particle as a function of the illuminating power, thus avoiding the use of thermal probes. Our results help interpret temperature, a statistical parameter, in the nanoscale and the concept of heat production by nanoparticles under thermal agitation. es_ES
dc.description.sponsorship This work was supported by the Spanish Ministry of Science, Innovation and Universities (Grant MAT2015-71806-R). IMDEA Nanociencia acknowledges support from the "Severo Ochoa" Programme for Centers of Excellence in R&D (SEV-2016-0686). H.R-R. is supported by an FPI-UAM 2015 fellowship. es_ES
dc.language Inglés es_ES
dc.publisher American Chemical Society es_ES
dc.relation.ispartof The Journal of Physical Chemistry Letters es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Nanoparticle es_ES
dc.subject Hyperthermia es_ES
dc.subject Magnetic es_ES
dc.subject Optical tweezers es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Heat Generation in Single Magnetic Nanoparticles under Near-Infrared Irradiation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1021/acs.jpclett.0c00143 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2015-71806-R/ES/INFLUENCIA DEL CALOR EMITIDO POR NANOPARTICULAS MAGNETICAS SOBRE BIOMOLECULAS DETERMINADO MEDIANTE PINZAS OPTICAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2016-0686/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Rodríguez-Rodríguez, H.; Salas, G.; Arias-Gonzalez, JR. (2020). Heat Generation in Single Magnetic Nanoparticles under Near-Infrared Irradiation. The Journal of Physical Chemistry Letters. 11(6):2182-2187. https://doi.org/10.1021/acs.jpclett.0c00143 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1021/acs.jpclett.0c00143 es_ES
dc.description.upvformatpinicio 2182 es_ES
dc.description.upvformatpfin 2187 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 6 es_ES
dc.identifier.pmid 32119551 es_ES
dc.relation.pasarela S\407942 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Mohammed, L., Gomaa, H. G., Ragab, D., & Zhu, J. (2017). Magnetic nanoparticles for environmental and biomedical applications: A review. Particuology, 30, 1-14. doi:10.1016/j.partic.2016.06.001 es_ES
dc.description.references Beik, J., Abed, Z., Ghoreishi, F. S., Hosseini-Nami, S., Mehrzadi, S., Shakeri-Zadeh, A., & Kamrava, S. K. (2016). Nanotechnology in hyperthermia cancer therapy: From fundamental principles to advanced applications. Journal of Controlled Release, 235, 205-221. doi:10.1016/j.jconrel.2016.05.062 es_ES
dc.description.references Jaque, D., Martínez Maestro, L., del Rosal, B., Haro-Gonzalez, P., Benayas, A., Plaza, J. L., … García Solé, J. (2014). Nanoparticles for photothermal therapies. Nanoscale, 6(16), 9494-9530. doi:10.1039/c4nr00708e es_ES
dc.description.references Ling, D., Lee, N., & Hyeon, T. (2015). Chemical Synthesis and Assembly of Uniformly Sized Iron Oxide Nanoparticles for Medical Applications. Accounts of Chemical Research, 48(5), 1276-1285. doi:10.1021/acs.accounts.5b00038 es_ES
dc.description.references Stanicki, D., Elst, L. V., Muller, R. N., & Laurent, S. (2015). Synthesis and processing of magnetic nanoparticles. Current Opinion in Chemical Engineering, 8, 7-14. doi:10.1016/j.coche.2015.01.003 es_ES
dc.description.references Jin, R., Lin, B., Li, D., & Ai, H. (2014). Superparamagnetic iron oxide nanoparticles for MR imaging and therapy: design considerations and clinical applications. Current Opinion in Pharmacology, 18, 18-27. doi:10.1016/j.coph.2014.08.002 es_ES
dc.description.references Singh, D., McMillan, J. M., Kabanov, A. V., Sokolsky-Papkov, M., & Gendelman, H. E. (2014). Bench-to-bedside translation of magnetic nanoparticles. Nanomedicine, 9(4), 501-516. doi:10.2217/nnm.14.5 es_ES
dc.description.references Weissig, V., Pettinger, T., & Murdock, N. (2014). Nanopharmaceuticals (part 1): products on the market. International Journal of Nanomedicine, 4357. doi:10.2147/ijn.s46900 es_ES
dc.description.references Mosayebi, J., Kiyasatfar, M., & Laurent, S. (2017). Synthesis, Functionalization, and Design of Magnetic Nanoparticles for Theranostic Applications. Advanced Healthcare Materials, 6(23), 1700306. doi:10.1002/adhm.201700306 es_ES
dc.description.references Shen, S., Kong, F., Guo, X., Wu, L., Shen, H., Xie, M., … Ge, Y. (2013). CMCTS stabilized Fe3O4 particles with extremely low toxicity as highly efficient near-infrared photothermal agents for in vivo tumor ablation. Nanoscale, 5(17), 8056. doi:10.1039/c3nr01447a es_ES
dc.description.references Espinosa, A., Di Corato, R., Kolosnjaj-Tabi, J., Flaud, P., Pellegrino, T., & Wilhelm, C. (2016). Duality of Iron Oxide Nanoparticles in Cancer Therapy: Amplification of Heating Efficiency by Magnetic Hyperthermia and Photothermal Bimodal Treatment. ACS Nano, 10(2), 2436-2446. doi:10.1021/acsnano.5b07249 es_ES
dc.description.references Chen, H., Burnett, J., Zhang, F., Zhang, J., Paholak, H., & Sun, D. (2014). Highly crystallized iron oxide nanoparticles as effective and biodegradable mediators for photothermal cancer therapy. J. Mater. Chem. B, 2(7), 757-765. doi:10.1039/c3tb21338b es_ES
dc.description.references Liao, M.-Y., Lai, P.-S., Yu, H.-P., Lin, H.-P., & Huang, C.-C. (2012). Innovative ligand-assisted synthesis of NIR-activated iron oxide for cancer theranostics. Chemical Communications, 48(43), 5319. doi:10.1039/c2cc31448g es_ES
dc.description.references Zhou, Z., Sun, Y., Shen, J., Wei, J., Yu, C., Kong, B., … Wang, W. (2014). Iron/iron oxide core/shell nanoparticles for magnetic targeting MRI and near-infrared photothermal therapy. Biomaterials, 35(26), 7470-7478. doi:10.1016/j.biomaterials.2014.04.063 es_ES
dc.description.references Shen, S., Wang, S., Zheng, R., Zhu, X., Jiang, X., Fu, D., & Yang, W. (2015). Magnetic nanoparticle clusters for photothermal therapy with near-infrared irradiation. Biomaterials, 39, 67-74. doi:10.1016/j.biomaterials.2014.10.064 es_ES
dc.description.references Wang, J., Zhao, H., Zhou, Z., Zhou, P., Yan, Y., Wang, M., … Yang, S. (2016). MR/SPECT Imaging Guided Photothermal Therapy of Tumor-Targeting Fe@Fe3O4 Nanoparticles in Vivo with Low Mononuclear Phagocyte Uptake. ACS Applied Materials & Interfaces, 8(31), 19872-19882. doi:10.1021/acsami.6b04639 es_ES
dc.description.references Chu, M., Shao, Y., Peng, J., Dai, X., Li, H., Wu, Q., & Shi, D. (2013). Near-infrared laser light mediated cancer therapy by photothermal effect of Fe3O4 magnetic nanoparticles. Biomaterials, 34(16), 4078-4088. doi:10.1016/j.biomaterials.2013.01.086 es_ES
dc.description.references Peng, H., Tang, J., Zheng, R., Guo, G., Dong, A., Wang, Y., & Yang, W. (2017). Nuclear-Targeted Multifunctional Magnetic Nanoparticles for Photothermal Therapy. Advanced Healthcare Materials, 6(7), 1601289. doi:10.1002/adhm.201601289 es_ES
dc.description.references Ortgies, D. H., Teran, F. J., Rocha, U., de la Cueva, L., Salas, G., Cabrera, D., … Jaque, D. (2018). Optomagnetic Nanoplatforms for In Situ Controlled Hyperthermia. Advanced Functional Materials, 28(11), 1704434. doi:10.1002/adfm.201704434 es_ES
dc.description.references Ren, X., Zheng, R., Fang, X., Wang, X., Zhang, X., Yang, W., & Sha, X. (2016). Red blood cell membrane camouflaged magnetic nanoclusters for imaging-guided photothermal therapy. Biomaterials, 92, 13-24. doi:10.1016/j.biomaterials.2016.03.026 es_ES
dc.description.references Hemmer, E., Venkatachalam, N., Hyodo, H., Hattori, A., Ebina, Y., Kishimoto, H., & Soga, K. (2013). Upconverting and NIR emitting rare earth based nanostructures for NIR-bioimaging. Nanoscale, 5(23), 11339. doi:10.1039/c3nr02286b es_ES
dc.description.references Anderson, R. R., & Parrish, J. A. (1981). The Optics of Human Skin. Journal of Investigative Dermatology, 77(1), 13-19. doi:10.1111/1523-1747.ep12479191 es_ES
dc.description.references Southern, P., & Pankhurst, Q. A. (2017). Commentary on the clinical and preclinical dosage limits of interstitially administered magnetic fluids for therapeutic hyperthermia based on current practice and efficacy models. International Journal of Hyperthermia, 34(6), 671-686. doi:10.1080/02656736.2017.1365953 es_ES
dc.description.references Dias, J. T., Moros, M., del Pino, P., Rivera, S., Grazú, V., & de la Fuente, J. M. (2013). DNA as a Molecular Local Thermal Probe for the Analysis of Magnetic Hyperthermia. Angewandte Chemie International Edition, 52(44), 11526-11529. doi:10.1002/anie.201305835 es_ES
dc.description.references Riedinger, A., Guardia, P., Curcio, A., Garcia, M. A., Cingolani, R., Manna, L., & Pellegrino, T. (2013). Subnanometer Local Temperature Probing and Remotely Controlled Drug Release Based on Azo-Functionalized Iron Oxide Nanoparticles. Nano Letters, 13(6), 2399-2406. doi:10.1021/nl400188q es_ES
dc.description.references Piñol, R., Brites, C. D. S., Bustamante, R., Martínez, A., Silva, N. J. O., Murillo, J. L., … Millán, A. (2015). Joining Time-Resolved Thermometry and Magnetic-Induced Heating in a Single Nanoparticle Unveils Intriguing Thermal Properties. ACS Nano, 9(3), 3134-3142. doi:10.1021/acsnano.5b00059 es_ES
dc.description.references Bendix, P. M., Reihani, S. N. S., & Oddershede, L. B. (2010). Direct Measurements of Heating by Electromagnetically Trapped Gold Nanoparticles on Supported Lipid Bilayers. ACS Nano, 4(4), 2256-2262. doi:10.1021/nn901751w es_ES
dc.description.references Urban, A. S., Fedoruk, M., Horton, M. R., Rädler, J. O., Stefani, F. D., & Feldmann, J. (2009). Controlled Nanometric Phase Transitions of Phospholipid Membranes by Plasmonic Heating of Single Gold Nanoparticles. Nano Letters, 9(8), 2903-2908. doi:10.1021/nl901201h es_ES
dc.description.references Rodríguez-Rodríguez, H., de Lorenzo, S., de la Cueva, L., Salas, G., & Arias-Gonzalez, J. R. (2018). Optical Trapping of Single Nanostructures in a Weakly Focused Beam. Application to Magnetic Nanoparticles. The Journal of Physical Chemistry C, 122(31), 18094-18101. doi:10.1021/acs.jpcc.8b04676 es_ES
dc.description.references Schlegel, A., Alvarado, S. F., & Wachter, P. (1979). Optical properties of magnetite (Fe3O4). Journal of Physics C: Solid State Physics, 12(6), 1157-1164. doi:10.1088/0022-3719/12/6/027 es_ES
dc.description.references Johnson, P. B., & Christy, R. W. (1972). Optical Constants of the Noble Metals. Physical Review B, 6(12), 4370-4379. doi:10.1103/physrevb.6.4370 es_ES
dc.description.references Hormeño, S., Gregorio-Godoy, P., Pérez-Juste, J., Liz-Marzán, L. M., Juárez, B. H., & Arias-Gonzalez, J. R. (2013). Laser Heating Tunability by Off-Resonant Irradiation of Gold Nanoparticles. Small, 10(2), 376-384. doi:10.1002/smll.201301912 es_ES
dc.description.references Aden, A. L., & Kerker, M. (1951). Scattering of Electromagnetic Waves from Two Concentric Spheres. Journal of Applied Physics, 22(10), 1242-1246. doi:10.1063/1.1699834 es_ES
dc.description.references De Lorenzo, S., Ribezzi-Crivellari, M., Arias-Gonzalez, J. R., Smith, S. B., & Ritort, F. (2015). A Temperature-Jump Optical Trap for Single-Molecule Manipulation. Biophysical Journal, 108(12), 2854-2864. doi:10.1016/j.bpj.2015.05.017 es_ES
dc.description.references Hormeño, S., Bastús, N. G., Pietsch, A., Weller, H., Arias-Gonzalez, J. R., & Juárez, B. H. (2011). Plasmon-Exciton Interactions on Single Thermoresponsive Platforms Demonstrated by Optical Tweezers. Nano Letters, 11(11), 4742-4747. doi:10.1021/nl202560j es_ES
dc.description.references Rodríguez-Rodríguez, H., Acebrón, M., Juárez, B. H., & Arias-Gonzalez, J. R. (2017). Luminescence Dynamics of Silica-Encapsulated Quantum Dots During Optical Trapping. The Journal of Physical Chemistry C, 121(18), 10124-10130. doi:10.1021/acs.jpcc.6b11867 es_ES
dc.description.references Hormeño, S., Ibarra, B., Chichón, F. J., Habermann, K., Lange, B. M. H., Valpuesta, J. M., … Arias-Gonzalez, J. R. (2009). Single Centrosome Manipulation Reveals Its Electric Charge and Associated Dynamic Structure. Biophysical Journal, 97(4), 1022-1030. doi:10.1016/j.bpj.2009.06.004 es_ES
dc.description.references Mao, H., Ricardo Arias-Gonzalez, J., Smith, S. B., Tinoco, I., & Bustamante, C. (2005). Temperature Control Methods in a Laser Tweezers System. Biophysical Journal, 89(2), 1308-1316. doi:10.1529/biophysj.104.054536 es_ES
dc.description.references Peterman, E. J. G., Gittes, F., & Schmidt, C. F. (2003). Laser-Induced Heating in Optical Traps. Biophysical Journal, 84(2), 1308-1316. doi:10.1016/s0006-3495(03)74946-7 es_ES
dc.description.references Català, F., Marsà, F., Montes-Usategui, M., Farré, A., & Martín-Badosa, E. (2017). Influence of experimental parameters on the laser heating of an optical trap. Scientific Reports, 7(1). doi:10.1038/s41598-017-15904-6 es_ES
dc.description.references Govorov, A. O., Zhang, W., Skeini, T., Richardson, H., Lee, J., & Kotov, N. A. (2006). Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances. Nanoscale Research Letters, 1(1). doi:10.1007/s11671-006-9015-7 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem