- -

Stability and applicability of iterative methods with memory

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Stability and applicability of iterative methods with memory

Show full item record

Chicharro, FI.; Cordero Barbero, A.; Garrido, N.; Torregrosa Sánchez, JR. (2019). Stability and applicability of iterative methods with memory. Journal of Mathematical Chemistry. 57(5):1282-1300. https://doi.org/10.1007/s10910-018-0952-z

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/160823

Files in this item

Item Metadata

Title: Stability and applicability of iterative methods with memory
Author: Chicharro, Francisco I. Cordero Barbero, Alicia Garrido, Neus Torregrosa Sánchez, Juan Ramón
UPV Unit: Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Issued date:
Abstract:
[EN] Based on the third-order Traub's method, two iterative schemes with memory are introduced. The proper inclusion of accelerating parameters allows the introduction of memory. Therefore, the order of convergence of the ...[+]
Subjects: Nonlinear equation , Iterative method with memory , Derivative-free , Complex dynamics , Basin of attraction , Chemistry applications
Copyrigths: Cerrado
Source:
Journal of Mathematical Chemistry. (issn: 0259-9791 )
DOI: 10.1007/s10910-018-0952-z
Publisher:
Springer-Verlag
Publisher version: https://doi.org/10.1007/s10910-018-0952-z
Conference name: 18th International Conference on Computational and Mathematical Methods in Science and Engineering (CMMSE 2018)
Conference place: Rota, Spain
Conference date: Julio 09-14,2018
Project ID:
info:eu-repo/grantAgreement/MINECO//MTM2014-52016-C2-2-P/ES/DISEÑO DE METODOS ITERATIVOS EFICIENTES PARA RESOLVER PROBLEMAS NO LINEALES: CONVERGENCIA, COMPORTAMIENTO DINAMICO Y APLICACIONES. ECUACIONES MATRICIALES./
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F089/ES/Resolución de ecuaciones y sistemas no lineales mediante técnicas iterativas: análisis dinámico y aplicaciones/
Thanks:
This research was partially supported by Ministerio de Economia y Competitividad MTM2014-52016-C2-2-P and Generalitat Valenciana PROMETEO/2016/089.
Type: Artículo Comunicación en congreso

References

J.M. Ortega, W.C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables (Academic Press, Cambridge, 1970)

A.M. Ostrowski, Solutions of Equations and Systems of Equations (Academic Press, Cambridge, 1966)

H.T. Kung, J.F. Traub, Optimal order of one-point and multipoint iteration. J. Assoc. Comput. Math. 21, 643–51 (1974) [+]
J.M. Ortega, W.C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables (Academic Press, Cambridge, 1970)

A.M. Ostrowski, Solutions of Equations and Systems of Equations (Academic Press, Cambridge, 1966)

H.T. Kung, J.F. Traub, Optimal order of one-point and multipoint iteration. J. Assoc. Comput. Math. 21, 643–51 (1974)

F. Soleymani, T. Lotfi, P. Bakhtiari, A multi-step class of iterative methods for nonlinear systems. Optim. Lett. 8, 1001–1015 (2014)

A. Cordero, J.L. Hueso, E. Martínez, J.R. Torregrosa, A modified Newton–Jarratt’s composition. Numer. Algorithm 55, 87–99 (2010)

F.I. Chicharro, A. Cordero, J.R. Torregrosa, Dynamics of iterative families with memory based on weight functions procedure. J. Appl. Math. Comput. (2018). https://doi.org/10.1016/j.cam.2018.01.019

J.R. Sharma, H. Arora, Efficient higher order derivative-free multipoint methods with and without memory for systems of nonlinear equations. Int. J. Comput. Math. 95, 920–938 (2018)

M.S. Petković, J.R. Sharma, On some efficient derivative-free iterative methods with memory for solving systems of nonlinear equations. Numer. Algorithm 71, 457–474 (2016)

C. Chun, B. Neta, How good are methods with memory for the solution of nonlinear equations? SeMA Journal 74, 613–625 (2017)

F. Soleymani, T. Lotfi, E. Tavakoli, F.K. Haghani, Several iterative methods with memory using self-accelerators. Appl. Math. Comput. 254, 452–458 (2015)

M.S. Petković, B. Neta, L.D. Petković, J. Džunić, Multipoint Methods for Solving Nonlinear Equations (Elsevier, New York, 2013)

S. Amat, S. Busquier, Advances in Iterative Methods for Nonlinear Equations (Springer, Berlin, 2016)

J.F. Traub, Iterative Methods for the Solution of Equations (Prentice-Hall, Upper Saddle River, 1964)

B. Campos, A. Cordero, J.R. Torregrosa, P. Vindel, A multidimensional dynamical approach to iterative methods with memory. Appl. Math. Comput. 271, 701–715 (2015)

B. Campos, A. Cordero, J.R. Torregrosa, P. Vindel, Stability of King’s family of iterative methods with memory. J. Comput. Appl. Math. 318, 504–514 (2017)

R.C. Robinson, An Introduction to Dynamical Systems: Continuous and Discrete (American Mathematical Society, Providence, 2012)

F.I. Chicharro, A. Cordero, J.R. Torregrosa, Drawing dynamical and parameters planes of iterative families and methods. Sci. World J. 780513, 1–11 (2013)

J.L. Varona, Graphic and numerical comparison between iterative methods. Math. Intell. 24, 37–46 (2002)

F.I. Chicharro, A. Cordero, J.R. Torregrosa, M.P. Vassileva, King-type derivative-free iterative families: real and memory dynamics. Complexity 2713145, 1–15 (2017)

Á.A. Magreñán, A new tool to study real dynamics: the convergence plane. Appl. Math. Comput. 248, 215–224 (2014)

S. Amat, S. Busquier, S. Plaza, Chaotic dynamics of a third-order Newton-type method. J. Math. Anal. Appl. 366, 24–32 (2010)

A. Cordero, J.R. Torregrosa, Variants of Newton’s method using fifth order quadrature formulas. Appl. Math. Comput. 190, 686–698 (2007)

M. Shacham, An improved memory method for the solution of a nonlinear equation. Chem. Eng. Sci. 44, 1495–1501 (1989)

I.K. Argyros, Á.A. Magreñán, L. Orcos, Local convergence and a chemical application of derivative free root finding methods with one parameter based on interpolation. J. Math. Chem. 54, 1404–1416 (2016)

C.F. Colebrook, C.M. White, Experiments with fluid friction in roughened pipes. Proc. R. Soc. Lond. 161, 367–381 (1937)

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record