Mostrar el registro sencillo del ítem
dc.contributor.author | Chicharro, Francisco I. | es_ES |
dc.contributor.author | Cordero Barbero, Alicia | es_ES |
dc.contributor.author | Garrido, Neus | es_ES |
dc.contributor.author | Torregrosa Sánchez, Juan Ramón | es_ES |
dc.date.accessioned | 2021-02-06T04:33:30Z | |
dc.date.available | 2021-02-06T04:33:30Z | |
dc.date.issued | 2019-05 | es_ES |
dc.identifier.issn | 0259-9791 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/160823 | |
dc.description.abstract | [EN] Based on the third-order Traub's method, two iterative schemes with memory are introduced. The proper inclusion of accelerating parameters allows the introduction of memory. Therefore, the order of convergence of the iterative methods increases from 3 up to 3.73 without new functional evaluations. One of them includes derivatives and the other one is derivative-free. The stability of the methods with memory is analyzed and their basins of attraction are compared to check the differences between them. The methods are applied to solve two nonlinear problems in Chemistry, such as the fractional conversion of the nitrogen-hydrogen feed that gets converted to ammonia and the Colebrook-White equation. | es_ES |
dc.description.sponsorship | This research was partially supported by Ministerio de Economia y Competitividad MTM2014-52016-C2-2-P and Generalitat Valenciana PROMETEO/2016/089. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Journal of Mathematical Chemistry | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Nonlinear equation | es_ES |
dc.subject | Iterative method with memory | es_ES |
dc.subject | Derivative-free | es_ES |
dc.subject | Complex dynamics | es_ES |
dc.subject | Basin of attraction | es_ES |
dc.subject | Chemistry applications | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Stability and applicability of iterative methods with memory | es_ES |
dc.type | Artículo | es_ES |
dc.type | Comunicación en congreso | es_ES |
dc.identifier.doi | 10.1007/s10910-018-0952-z | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2014-52016-C2-2-P/ES/DISEÑO DE METODOS ITERATIVOS EFICIENTES PARA RESOLVER PROBLEMAS NO LINEALES: CONVERGENCIA, COMPORTAMIENTO DINAMICO Y APLICACIONES. ECUACIONES MATRICIALES./ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F089/ES/Resolución de ecuaciones y sistemas no lineales mediante técnicas iterativas: análisis dinámico y aplicaciones/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Chicharro, FI.; Cordero Barbero, A.; Garrido, N.; Torregrosa Sánchez, JR. (2019). Stability and applicability of iterative methods with memory. Journal of Mathematical Chemistry. 57(5):1282-1300. https://doi.org/10.1007/s10910-018-0952-z | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.conferencename | 18th International Conference on Computational and Mathematical Methods in Science and Engineering (CMMSE 2018) | es_ES |
dc.relation.conferencedate | Julio 09-14,2018 | es_ES |
dc.relation.conferenceplace | Rota, Spain | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s10910-018-0952-z | es_ES |
dc.description.upvformatpinicio | 1282 | es_ES |
dc.description.upvformatpfin | 1300 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 57 | es_ES |
dc.description.issue | 5 | es_ES |
dc.relation.pasarela | S\368968 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Economía, Industria y Competitividad | es_ES |
dc.description.references | J.M. Ortega, W.C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables (Academic Press, Cambridge, 1970) | es_ES |
dc.description.references | A.M. Ostrowski, Solutions of Equations and Systems of Equations (Academic Press, Cambridge, 1966) | es_ES |
dc.description.references | H.T. Kung, J.F. Traub, Optimal order of one-point and multipoint iteration. J. Assoc. Comput. Math. 21, 643–51 (1974) | es_ES |
dc.description.references | F. Soleymani, T. Lotfi, P. Bakhtiari, A multi-step class of iterative methods for nonlinear systems. Optim. Lett. 8, 1001–1015 (2014) | es_ES |
dc.description.references | A. Cordero, J.L. Hueso, E. Martínez, J.R. Torregrosa, A modified Newton–Jarratt’s composition. Numer. Algorithm 55, 87–99 (2010) | es_ES |
dc.description.references | F.I. Chicharro, A. Cordero, J.R. Torregrosa, Dynamics of iterative families with memory based on weight functions procedure. J. Appl. Math. Comput. (2018). https://doi.org/10.1016/j.cam.2018.01.019 | es_ES |
dc.description.references | J.R. Sharma, H. Arora, Efficient higher order derivative-free multipoint methods with and without memory for systems of nonlinear equations. Int. J. Comput. Math. 95, 920–938 (2018) | es_ES |
dc.description.references | M.S. Petković, J.R. Sharma, On some efficient derivative-free iterative methods with memory for solving systems of nonlinear equations. Numer. Algorithm 71, 457–474 (2016) | es_ES |
dc.description.references | C. Chun, B. Neta, How good are methods with memory for the solution of nonlinear equations? SeMA Journal 74, 613–625 (2017) | es_ES |
dc.description.references | F. Soleymani, T. Lotfi, E. Tavakoli, F.K. Haghani, Several iterative methods with memory using self-accelerators. Appl. Math. Comput. 254, 452–458 (2015) | es_ES |
dc.description.references | M.S. Petković, B. Neta, L.D. Petković, J. Džunić, Multipoint Methods for Solving Nonlinear Equations (Elsevier, New York, 2013) | es_ES |
dc.description.references | S. Amat, S. Busquier, Advances in Iterative Methods for Nonlinear Equations (Springer, Berlin, 2016) | es_ES |
dc.description.references | J.F. Traub, Iterative Methods for the Solution of Equations (Prentice-Hall, Upper Saddle River, 1964) | es_ES |
dc.description.references | B. Campos, A. Cordero, J.R. Torregrosa, P. Vindel, A multidimensional dynamical approach to iterative methods with memory. Appl. Math. Comput. 271, 701–715 (2015) | es_ES |
dc.description.references | B. Campos, A. Cordero, J.R. Torregrosa, P. Vindel, Stability of King’s family of iterative methods with memory. J. Comput. Appl. Math. 318, 504–514 (2017) | es_ES |
dc.description.references | R.C. Robinson, An Introduction to Dynamical Systems: Continuous and Discrete (American Mathematical Society, Providence, 2012) | es_ES |
dc.description.references | F.I. Chicharro, A. Cordero, J.R. Torregrosa, Drawing dynamical and parameters planes of iterative families and methods. Sci. World J. 780513, 1–11 (2013) | es_ES |
dc.description.references | J.L. Varona, Graphic and numerical comparison between iterative methods. Math. Intell. 24, 37–46 (2002) | es_ES |
dc.description.references | F.I. Chicharro, A. Cordero, J.R. Torregrosa, M.P. Vassileva, King-type derivative-free iterative families: real and memory dynamics. Complexity 2713145, 1–15 (2017) | es_ES |
dc.description.references | Á.A. Magreñán, A new tool to study real dynamics: the convergence plane. Appl. Math. Comput. 248, 215–224 (2014) | es_ES |
dc.description.references | S. Amat, S. Busquier, S. Plaza, Chaotic dynamics of a third-order Newton-type method. J. Math. Anal. Appl. 366, 24–32 (2010) | es_ES |
dc.description.references | A. Cordero, J.R. Torregrosa, Variants of Newton’s method using fifth order quadrature formulas. Appl. Math. Comput. 190, 686–698 (2007) | es_ES |
dc.description.references | M. Shacham, An improved memory method for the solution of a nonlinear equation. Chem. Eng. Sci. 44, 1495–1501 (1989) | es_ES |
dc.description.references | I.K. Argyros, Á.A. Magreñán, L. Orcos, Local convergence and a chemical application of derivative free root finding methods with one parameter based on interpolation. J. Math. Chem. 54, 1404–1416 (2016) | es_ES |
dc.description.references | C.F. Colebrook, C.M. White, Experiments with fluid friction in roughened pipes. Proc. R. Soc. Lond. 161, 367–381 (1937) | es_ES |