- -

Stability and applicability of iterative methods with memory

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Stability and applicability of iterative methods with memory

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Chicharro, Francisco I. es_ES
dc.contributor.author Cordero Barbero, Alicia es_ES
dc.contributor.author Garrido, Neus es_ES
dc.contributor.author Torregrosa Sánchez, Juan Ramón es_ES
dc.date.accessioned 2021-02-06T04:33:30Z
dc.date.available 2021-02-06T04:33:30Z
dc.date.issued 2019-05 es_ES
dc.identifier.issn 0259-9791 es_ES
dc.identifier.uri http://hdl.handle.net/10251/160823
dc.description.abstract [EN] Based on the third-order Traub's method, two iterative schemes with memory are introduced. The proper inclusion of accelerating parameters allows the introduction of memory. Therefore, the order of convergence of the iterative methods increases from 3 up to 3.73 without new functional evaluations. One of them includes derivatives and the other one is derivative-free. The stability of the methods with memory is analyzed and their basins of attraction are compared to check the differences between them. The methods are applied to solve two nonlinear problems in Chemistry, such as the fractional conversion of the nitrogen-hydrogen feed that gets converted to ammonia and the Colebrook-White equation. es_ES
dc.description.sponsorship This research was partially supported by Ministerio de Economia y Competitividad MTM2014-52016-C2-2-P and Generalitat Valenciana PROMETEO/2016/089. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Journal of Mathematical Chemistry es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Nonlinear equation es_ES
dc.subject Iterative method with memory es_ES
dc.subject Derivative-free es_ES
dc.subject Complex dynamics es_ES
dc.subject Basin of attraction es_ES
dc.subject Chemistry applications es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Stability and applicability of iterative methods with memory es_ES
dc.type Artículo es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.1007/s10910-018-0952-z es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2014-52016-C2-2-P/ES/DISEÑO DE METODOS ITERATIVOS EFICIENTES PARA RESOLVER PROBLEMAS NO LINEALES: CONVERGENCIA, COMPORTAMIENTO DINAMICO Y APLICACIONES. ECUACIONES MATRICIALES./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F089/ES/Resolución de ecuaciones y sistemas no lineales mediante técnicas iterativas: análisis dinámico y aplicaciones/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Chicharro, FI.; Cordero Barbero, A.; Garrido, N.; Torregrosa Sánchez, JR. (2019). Stability and applicability of iterative methods with memory. Journal of Mathematical Chemistry. 57(5):1282-1300. https://doi.org/10.1007/s10910-018-0952-z es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename 18th International Conference on Computational and Mathematical Methods in Science and Engineering (CMMSE 2018) es_ES
dc.relation.conferencedate Julio 09-14,2018 es_ES
dc.relation.conferenceplace Rota, Spain es_ES
dc.relation.publisherversion https://doi.org/10.1007/s10910-018-0952-z es_ES
dc.description.upvformatpinicio 1282 es_ES
dc.description.upvformatpfin 1300 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 57 es_ES
dc.description.issue 5 es_ES
dc.relation.pasarela S\368968 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.description.references J.M. Ortega, W.C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables (Academic Press, Cambridge, 1970) es_ES
dc.description.references A.M. Ostrowski, Solutions of Equations and Systems of Equations (Academic Press, Cambridge, 1966) es_ES
dc.description.references H.T. Kung, J.F. Traub, Optimal order of one-point and multipoint iteration. J. Assoc. Comput. Math. 21, 643–51 (1974) es_ES
dc.description.references F. Soleymani, T. Lotfi, P. Bakhtiari, A multi-step class of iterative methods for nonlinear systems. Optim. Lett. 8, 1001–1015 (2014) es_ES
dc.description.references A. Cordero, J.L. Hueso, E. Martínez, J.R. Torregrosa, A modified Newton–Jarratt’s composition. Numer. Algorithm 55, 87–99 (2010) es_ES
dc.description.references F.I. Chicharro, A. Cordero, J.R. Torregrosa, Dynamics of iterative families with memory based on weight functions procedure. J. Appl. Math. Comput. (2018). https://doi.org/10.1016/j.cam.2018.01.019 es_ES
dc.description.references J.R. Sharma, H. Arora, Efficient higher order derivative-free multipoint methods with and without memory for systems of nonlinear equations. Int. J. Comput. Math. 95, 920–938 (2018) es_ES
dc.description.references M.S. Petković, J.R. Sharma, On some efficient derivative-free iterative methods with memory for solving systems of nonlinear equations. Numer. Algorithm 71, 457–474 (2016) es_ES
dc.description.references C. Chun, B. Neta, How good are methods with memory for the solution of nonlinear equations? SeMA Journal 74, 613–625 (2017) es_ES
dc.description.references F. Soleymani, T. Lotfi, E. Tavakoli, F.K. Haghani, Several iterative methods with memory using self-accelerators. Appl. Math. Comput. 254, 452–458 (2015) es_ES
dc.description.references M.S. Petković, B. Neta, L.D. Petković, J. Džunić, Multipoint Methods for Solving Nonlinear Equations (Elsevier, New York, 2013) es_ES
dc.description.references S. Amat, S. Busquier, Advances in Iterative Methods for Nonlinear Equations (Springer, Berlin, 2016) es_ES
dc.description.references J.F. Traub, Iterative Methods for the Solution of Equations (Prentice-Hall, Upper Saddle River, 1964) es_ES
dc.description.references B. Campos, A. Cordero, J.R. Torregrosa, P. Vindel, A multidimensional dynamical approach to iterative methods with memory. Appl. Math. Comput. 271, 701–715 (2015) es_ES
dc.description.references B. Campos, A. Cordero, J.R. Torregrosa, P. Vindel, Stability of King’s family of iterative methods with memory. J. Comput. Appl. Math. 318, 504–514 (2017) es_ES
dc.description.references R.C. Robinson, An Introduction to Dynamical Systems: Continuous and Discrete (American Mathematical Society, Providence, 2012) es_ES
dc.description.references F.I. Chicharro, A. Cordero, J.R. Torregrosa, Drawing dynamical and parameters planes of iterative families and methods. Sci. World J. 780513, 1–11 (2013) es_ES
dc.description.references J.L. Varona, Graphic and numerical comparison between iterative methods. Math. Intell. 24, 37–46 (2002) es_ES
dc.description.references F.I. Chicharro, A. Cordero, J.R. Torregrosa, M.P. Vassileva, King-type derivative-free iterative families: real and memory dynamics. Complexity 2713145, 1–15 (2017) es_ES
dc.description.references Á.A. Magreñán, A new tool to study real dynamics: the convergence plane. Appl. Math. Comput. 248, 215–224 (2014) es_ES
dc.description.references S. Amat, S. Busquier, S. Plaza, Chaotic dynamics of a third-order Newton-type method. J. Math. Anal. Appl. 366, 24–32 (2010) es_ES
dc.description.references A. Cordero, J.R. Torregrosa, Variants of Newton’s method using fifth order quadrature formulas. Appl. Math. Comput. 190, 686–698 (2007) es_ES
dc.description.references M. Shacham, An improved memory method for the solution of a nonlinear equation. Chem. Eng. Sci. 44, 1495–1501 (1989) es_ES
dc.description.references I.K. Argyros, Á.A. Magreñán, L. Orcos, Local convergence and a chemical application of derivative free root finding methods with one parameter based on interpolation. J. Math. Chem. 54, 1404–1416 (2016) es_ES
dc.description.references C.F. Colebrook, C.M. White, Experiments with fluid friction in roughened pipes. Proc. R. Soc. Lond. 161, 367–381 (1937) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem