- -

Epidemic spreading by indirect transmission in a compartmental farm

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Epidemic spreading by indirect transmission in a compartmental farm

Mostrar el registro completo del ítem

Coll, C.; Sánchez, E. (2020). Epidemic spreading by indirect transmission in a compartmental farm. Applied Mathematics and Computation. 386:1-9. https://doi.org/10.1016/j.amc.2020.125473

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/160833

Ficheros en el ítem

Metadatos del ítem

Título: Epidemic spreading by indirect transmission in a compartmental farm
Autor: Coll, Carmen Sánchez, Elena
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] In this paper, we present a discrete dynamic system which describes an epidemic spreading within a single farm, where animals are separated into batches. In this model, we consider an indirect transmission of the ...[+]
Palabras clave: Epidemic process , Discrete-time system , Block tridiagonal matrix , Non-negative matrix , Stability
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Applied Mathematics and Computation. (issn: 0096-3003 )
DOI: 10.1016/j.amc.2020.125473
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.amc.2020.125473
Tipo: Artículo

References

Diekmann, O., Heesterbeek, J. A. P., & Roberts, M. G. (2009). The construction of next-generation matrices for compartmental epidemic models. Journal of The Royal Society Interface, 7(47), 873-885. doi:10.1098/rsif.2009.0386

Kajin, M., Almeida, P. J. A. L., Vieira, M. V., & Cerqueira, R. (2012). THE STATE OF THE ART OF POPULATION PROJECTION MODELS: FROM THE LESLIE MATRIX TO EVOLUTIONARY DEMOGRAPHY. Oecologia Australis, 16(01), 13-22. doi:10.4257/oeco.2012.1601.02

Han, C., & Li, L. (2017). Control on the transmission of computer viruses in network. Automatic Control and Computer Sciences, 51(4), 233-239. doi:10.3103/s0146411617040022 [+]
Diekmann, O., Heesterbeek, J. A. P., & Roberts, M. G. (2009). The construction of next-generation matrices for compartmental epidemic models. Journal of The Royal Society Interface, 7(47), 873-885. doi:10.1098/rsif.2009.0386

Kajin, M., Almeida, P. J. A. L., Vieira, M. V., & Cerqueira, R. (2012). THE STATE OF THE ART OF POPULATION PROJECTION MODELS: FROM THE LESLIE MATRIX TO EVOLUTIONARY DEMOGRAPHY. Oecologia Australis, 16(01), 13-22. doi:10.4257/oeco.2012.1601.02

Han, C., & Li, L. (2017). Control on the transmission of computer viruses in network. Automatic Control and Computer Sciences, 51(4), 233-239. doi:10.3103/s0146411617040022

Pastor-Satorras, R., Castellano, C., Van Mieghem, P., & Vespignani, A. (2015). Epidemic processes in complex networks. Reviews of Modern Physics, 87(3), 925-979. doi:10.1103/revmodphys.87.925

Hernández-Cerón, N., Feng, Z., & van den Driessche, P. (2013). Reproduction numbers for discrete-time epidemic models with arbitrary stage distributions. Journal of Difference Equations and Applications, 19(10), 1671-1693. doi:10.1080/10236198.2013.772597

Li, C.-K., & Schneider, H. (2002). Applications of Perron-Frobenius theory to population dynamics. Journal of Mathematical Biology, 44(5), 450-462. doi:10.1007/s002850100132

Kouachi, S. (2006). Eigenvalues and eigenvectors of tridiagonal matrices. The Electronic Journal of Linear Algebra, 15. doi:10.13001/1081-3810.1223

Ripoll, J., Saldaña, J., & Senar, J. C. (2004). Evolutionarily stable transition rates in a stage-structured model. An application to the analysis of size distributions of badges of social status. Mathematical Biosciences, 190(2), 145-181. doi:10.1016/j.mbs.2004.03.003

Rózsa, P., Bevilacqua, R., Romani, F., & Favati, P. (1991). On band matrices and their inverses. Linear Algebra and its Applications, 150, 287-295. doi:10.1016/0024-3795(91)90175-v

Rózsa, P., & Romani, F. (1992). On periodic block-tridiagonal matrices. Linear Algebra and its Applications, 167, 35-52. doi:10.1016/0024-3795(92)90337-a

Emmert, K. E., & Allen, L. J. S. (2004). Population Persistence and Extinction in a Discrete-time, Stage-structured Epidemic Model. Journal of Difference Equations and Applications, 10(13-15), 1177-1199. doi:10.1080/10236190410001654151

Gilbert, M., Conchedda, G., Van Boeckel, T. P., Cinardi, G., Linard, C., Nicolas, G., … Robinson, T. P. (2015). Income Disparities and the Global Distribution of Intensively Farmed Chicken and Pigs. PLOS ONE, 10(7), e0133381. doi:10.1371/journal.pone.0133381

Scott, A. B., Singh, M., Groves, P., Hernandez-Jover, M., Barnes, B., Glass, K., … Toribio, J.-A. (2018). Biosecurity practices on Australian commercial layer and meat chicken farms: Performance and perceptions of farmers. PLOS ONE, 13(4), e0195582. doi:10.1371/journal.pone.0195582

Van Steenwinkel, S., Ribbens, S., Ducheyne, E., Goossens, E., & Dewulf, J. (2011). Assessing biosecurity practices, movements and densities of poultry sites across Belgium, resulting in different farm risk-groups for infectious disease introduction and spread. Preventive Veterinary Medicine, 98(4), 259-270. doi:10.1016/j.prevetmed.2010.12.004

Aïnseba, B., Benosman, C., & Magal, P. (2010). A model for ovine brucellosis incorporating direct and indirect transmission. Journal of Biological Dynamics, 4(1), 2-11. doi:10.1080/17513750903171688

Joh, R. I., Wang, H., Weiss, H., & Weitz, J. S. (2008). Dynamics of Indirectly Transmitted Infectious Diseases with Immunological Threshold. Bulletin of Mathematical Biology, 71(4), 845-862. doi:10.1007/s11538-008-9384-4

Tien, J. H., & Earn, D. J. D. (2010). Multiple Transmission Pathways and Disease Dynamics in a Waterborne Pathogen Model. Bulletin of Mathematical Biology, 72(6), 1506-1533. doi:10.1007/s11538-010-9507-6

Barril, C., Calsina, À., & Ripoll, J. (2017). A practical approach to R 0 in continuous‐time ecological models. Mathematical Methods in the Applied Sciences, 41(18), 8432-8445. doi:10.1002/mma.4673

Barril, C., Calsina, À., & Ripoll, J. (2017). On the Reproduction Number of a Gut Microbiota Model. Bulletin of Mathematical Biology, 79(11), 2727-2746. doi:10.1007/s11538-017-0352-8

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem