- -

Epidemic spreading by indirect transmission in a compartmental farm

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Epidemic spreading by indirect transmission in a compartmental farm

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Coll, Carmen es_ES
dc.contributor.author Sánchez, Elena es_ES
dc.date.accessioned 2021-02-06T04:33:45Z
dc.date.available 2021-02-06T04:33:45Z
dc.date.issued 2020-12-01 es_ES
dc.identifier.issn 0096-3003 es_ES
dc.identifier.uri http://hdl.handle.net/10251/160833
dc.description.abstract [EN] In this paper, we present a discrete dynamic system which describes an epidemic spreading within a single farm, where animals are separated into batches. In this model, we consider an indirect transmission of the disease coming from the bacteria remaining in the reservoir and taking into account the transfer of bacteria between adjacent compartments. In our model, tridiagonal matrices of non-negative blocks are involved. The development of the matrix spectral properties allows us to improve our understanding of the epidemic spreading within a farm with the above mentioned characteristics. Based on the results obtained, we have determined some bounds to obtain the maximum number of batches and the maximum population in each batch to ensure that the disease dies out. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Applied Mathematics and Computation es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Epidemic process es_ES
dc.subject Discrete-time system es_ES
dc.subject Block tridiagonal matrix es_ES
dc.subject Non-negative matrix es_ES
dc.subject Stability es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Epidemic spreading by indirect transmission in a compartmental farm es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.amc.2020.125473 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Coll, C.; Sánchez, E. (2020). Epidemic spreading by indirect transmission in a compartmental farm. Applied Mathematics and Computation. 386:1-9. https://doi.org/10.1016/j.amc.2020.125473 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.amc.2020.125473 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 9 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 386 es_ES
dc.relation.pasarela S\416269 es_ES
dc.description.references Diekmann, O., Heesterbeek, J. A. P., & Roberts, M. G. (2009). The construction of next-generation matrices for compartmental epidemic models. Journal of The Royal Society Interface, 7(47), 873-885. doi:10.1098/rsif.2009.0386 es_ES
dc.description.references Kajin, M., Almeida, P. J. A. L., Vieira, M. V., & Cerqueira, R. (2012). THE STATE OF THE ART OF POPULATION PROJECTION MODELS: FROM THE LESLIE MATRIX TO EVOLUTIONARY DEMOGRAPHY. Oecologia Australis, 16(01), 13-22. doi:10.4257/oeco.2012.1601.02 es_ES
dc.description.references Han, C., & Li, L. (2017). Control on the transmission of computer viruses in network. Automatic Control and Computer Sciences, 51(4), 233-239. doi:10.3103/s0146411617040022 es_ES
dc.description.references Pastor-Satorras, R., Castellano, C., Van Mieghem, P., & Vespignani, A. (2015). Epidemic processes in complex networks. Reviews of Modern Physics, 87(3), 925-979. doi:10.1103/revmodphys.87.925 es_ES
dc.description.references Hernández-Cerón, N., Feng, Z., & van den Driessche, P. (2013). Reproduction numbers for discrete-time epidemic models with arbitrary stage distributions. Journal of Difference Equations and Applications, 19(10), 1671-1693. doi:10.1080/10236198.2013.772597 es_ES
dc.description.references Li, C.-K., & Schneider, H. (2002). Applications of Perron-Frobenius theory to population dynamics. Journal of Mathematical Biology, 44(5), 450-462. doi:10.1007/s002850100132 es_ES
dc.description.references Kouachi, S. (2006). Eigenvalues and eigenvectors of tridiagonal matrices. The Electronic Journal of Linear Algebra, 15. doi:10.13001/1081-3810.1223 es_ES
dc.description.references Ripoll, J., Saldaña, J., & Senar, J. C. (2004). Evolutionarily stable transition rates in a stage-structured model. An application to the analysis of size distributions of badges of social status. Mathematical Biosciences, 190(2), 145-181. doi:10.1016/j.mbs.2004.03.003 es_ES
dc.description.references Rózsa, P., Bevilacqua, R., Romani, F., & Favati, P. (1991). On band matrices and their inverses. Linear Algebra and its Applications, 150, 287-295. doi:10.1016/0024-3795(91)90175-v es_ES
dc.description.references Rózsa, P., & Romani, F. (1992). On periodic block-tridiagonal matrices. Linear Algebra and its Applications, 167, 35-52. doi:10.1016/0024-3795(92)90337-a es_ES
dc.description.references Emmert, K. E., & Allen, L. J. S. (2004). Population Persistence and Extinction in a Discrete-time, Stage-structured Epidemic Model. Journal of Difference Equations and Applications, 10(13-15), 1177-1199. doi:10.1080/10236190410001654151 es_ES
dc.description.references Gilbert, M., Conchedda, G., Van Boeckel, T. P., Cinardi, G., Linard, C., Nicolas, G., … Robinson, T. P. (2015). Income Disparities and the Global Distribution of Intensively Farmed Chicken and Pigs. PLOS ONE, 10(7), e0133381. doi:10.1371/journal.pone.0133381 es_ES
dc.description.references Scott, A. B., Singh, M., Groves, P., Hernandez-Jover, M., Barnes, B., Glass, K., … Toribio, J.-A. (2018). Biosecurity practices on Australian commercial layer and meat chicken farms: Performance and perceptions of farmers. PLOS ONE, 13(4), e0195582. doi:10.1371/journal.pone.0195582 es_ES
dc.description.references Van Steenwinkel, S., Ribbens, S., Ducheyne, E., Goossens, E., & Dewulf, J. (2011). Assessing biosecurity practices, movements and densities of poultry sites across Belgium, resulting in different farm risk-groups for infectious disease introduction and spread. Preventive Veterinary Medicine, 98(4), 259-270. doi:10.1016/j.prevetmed.2010.12.004 es_ES
dc.description.references Aïnseba, B., Benosman, C., & Magal, P. (2010). A model for ovine brucellosis incorporating direct and indirect transmission. Journal of Biological Dynamics, 4(1), 2-11. doi:10.1080/17513750903171688 es_ES
dc.description.references Joh, R. I., Wang, H., Weiss, H., & Weitz, J. S. (2008). Dynamics of Indirectly Transmitted Infectious Diseases with Immunological Threshold. Bulletin of Mathematical Biology, 71(4), 845-862. doi:10.1007/s11538-008-9384-4 es_ES
dc.description.references Tien, J. H., & Earn, D. J. D. (2010). Multiple Transmission Pathways and Disease Dynamics in a Waterborne Pathogen Model. Bulletin of Mathematical Biology, 72(6), 1506-1533. doi:10.1007/s11538-010-9507-6 es_ES
dc.description.references Barril, C., Calsina, À., & Ripoll, J. (2017). A practical approach to R 0 in continuous‐time ecological models. Mathematical Methods in the Applied Sciences, 41(18), 8432-8445. doi:10.1002/mma.4673 es_ES
dc.description.references Barril, C., Calsina, À., & Ripoll, J. (2017). On the Reproduction Number of a Gut Microbiota Model. Bulletin of Mathematical Biology, 79(11), 2727-2746. doi:10.1007/s11538-017-0352-8 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem