Mostrar el registro sencillo del ítem
dc.contributor.author | Coll, Carmen | es_ES |
dc.contributor.author | Sánchez, Elena | es_ES |
dc.date.accessioned | 2021-02-06T04:33:45Z | |
dc.date.available | 2021-02-06T04:33:45Z | |
dc.date.issued | 2020-12-01 | es_ES |
dc.identifier.issn | 0096-3003 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/160833 | |
dc.description.abstract | [EN] In this paper, we present a discrete dynamic system which describes an epidemic spreading within a single farm, where animals are separated into batches. In this model, we consider an indirect transmission of the disease coming from the bacteria remaining in the reservoir and taking into account the transfer of bacteria between adjacent compartments. In our model, tridiagonal matrices of non-negative blocks are involved. The development of the matrix spectral properties allows us to improve our understanding of the epidemic spreading within a farm with the above mentioned characteristics. Based on the results obtained, we have determined some bounds to obtain the maximum number of batches and the maximum population in each batch to ensure that the disease dies out. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Applied Mathematics and Computation | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Epidemic process | es_ES |
dc.subject | Discrete-time system | es_ES |
dc.subject | Block tridiagonal matrix | es_ES |
dc.subject | Non-negative matrix | es_ES |
dc.subject | Stability | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Epidemic spreading by indirect transmission in a compartmental farm | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.amc.2020.125473 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Coll, C.; Sánchez, E. (2020). Epidemic spreading by indirect transmission in a compartmental farm. Applied Mathematics and Computation. 386:1-9. https://doi.org/10.1016/j.amc.2020.125473 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.amc.2020.125473 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 9 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 386 | es_ES |
dc.relation.pasarela | S\416269 | es_ES |
dc.description.references | Diekmann, O., Heesterbeek, J. A. P., & Roberts, M. G. (2009). The construction of next-generation matrices for compartmental epidemic models. Journal of The Royal Society Interface, 7(47), 873-885. doi:10.1098/rsif.2009.0386 | es_ES |
dc.description.references | Kajin, M., Almeida, P. J. A. L., Vieira, M. V., & Cerqueira, R. (2012). THE STATE OF THE ART OF POPULATION PROJECTION MODELS: FROM THE LESLIE MATRIX TO EVOLUTIONARY DEMOGRAPHY. Oecologia Australis, 16(01), 13-22. doi:10.4257/oeco.2012.1601.02 | es_ES |
dc.description.references | Han, C., & Li, L. (2017). Control on the transmission of computer viruses in network. Automatic Control and Computer Sciences, 51(4), 233-239. doi:10.3103/s0146411617040022 | es_ES |
dc.description.references | Pastor-Satorras, R., Castellano, C., Van Mieghem, P., & Vespignani, A. (2015). Epidemic processes in complex networks. Reviews of Modern Physics, 87(3), 925-979. doi:10.1103/revmodphys.87.925 | es_ES |
dc.description.references | Hernández-Cerón, N., Feng, Z., & van den Driessche, P. (2013). Reproduction numbers for discrete-time epidemic models with arbitrary stage distributions. Journal of Difference Equations and Applications, 19(10), 1671-1693. doi:10.1080/10236198.2013.772597 | es_ES |
dc.description.references | Li, C.-K., & Schneider, H. (2002). Applications of Perron-Frobenius theory to population dynamics. Journal of Mathematical Biology, 44(5), 450-462. doi:10.1007/s002850100132 | es_ES |
dc.description.references | Kouachi, S. (2006). Eigenvalues and eigenvectors of tridiagonal matrices. The Electronic Journal of Linear Algebra, 15. doi:10.13001/1081-3810.1223 | es_ES |
dc.description.references | Ripoll, J., Saldaña, J., & Senar, J. C. (2004). Evolutionarily stable transition rates in a stage-structured model. An application to the analysis of size distributions of badges of social status. Mathematical Biosciences, 190(2), 145-181. doi:10.1016/j.mbs.2004.03.003 | es_ES |
dc.description.references | Rózsa, P., Bevilacqua, R., Romani, F., & Favati, P. (1991). On band matrices and their inverses. Linear Algebra and its Applications, 150, 287-295. doi:10.1016/0024-3795(91)90175-v | es_ES |
dc.description.references | Rózsa, P., & Romani, F. (1992). On periodic block-tridiagonal matrices. Linear Algebra and its Applications, 167, 35-52. doi:10.1016/0024-3795(92)90337-a | es_ES |
dc.description.references | Emmert, K. E., & Allen, L. J. S. (2004). Population Persistence and Extinction in a Discrete-time, Stage-structured Epidemic Model. Journal of Difference Equations and Applications, 10(13-15), 1177-1199. doi:10.1080/10236190410001654151 | es_ES |
dc.description.references | Gilbert, M., Conchedda, G., Van Boeckel, T. P., Cinardi, G., Linard, C., Nicolas, G., … Robinson, T. P. (2015). Income Disparities and the Global Distribution of Intensively Farmed Chicken and Pigs. PLOS ONE, 10(7), e0133381. doi:10.1371/journal.pone.0133381 | es_ES |
dc.description.references | Scott, A. B., Singh, M., Groves, P., Hernandez-Jover, M., Barnes, B., Glass, K., … Toribio, J.-A. (2018). Biosecurity practices on Australian commercial layer and meat chicken farms: Performance and perceptions of farmers. PLOS ONE, 13(4), e0195582. doi:10.1371/journal.pone.0195582 | es_ES |
dc.description.references | Van Steenwinkel, S., Ribbens, S., Ducheyne, E., Goossens, E., & Dewulf, J. (2011). Assessing biosecurity practices, movements and densities of poultry sites across Belgium, resulting in different farm risk-groups for infectious disease introduction and spread. Preventive Veterinary Medicine, 98(4), 259-270. doi:10.1016/j.prevetmed.2010.12.004 | es_ES |
dc.description.references | Aïnseba, B., Benosman, C., & Magal, P. (2010). A model for ovine brucellosis incorporating direct and indirect transmission. Journal of Biological Dynamics, 4(1), 2-11. doi:10.1080/17513750903171688 | es_ES |
dc.description.references | Joh, R. I., Wang, H., Weiss, H., & Weitz, J. S. (2008). Dynamics of Indirectly Transmitted Infectious Diseases with Immunological Threshold. Bulletin of Mathematical Biology, 71(4), 845-862. doi:10.1007/s11538-008-9384-4 | es_ES |
dc.description.references | Tien, J. H., & Earn, D. J. D. (2010). Multiple Transmission Pathways and Disease Dynamics in a Waterborne Pathogen Model. Bulletin of Mathematical Biology, 72(6), 1506-1533. doi:10.1007/s11538-010-9507-6 | es_ES |
dc.description.references | Barril, C., Calsina, À., & Ripoll, J. (2017). A practical approach to R 0 in continuous‐time ecological models. Mathematical Methods in the Applied Sciences, 41(18), 8432-8445. doi:10.1002/mma.4673 | es_ES |
dc.description.references | Barril, C., Calsina, À., & Ripoll, J. (2017). On the Reproduction Number of a Gut Microbiota Model. Bulletin of Mathematical Biology, 79(11), 2727-2746. doi:10.1007/s11538-017-0352-8 | es_ES |