Mostrar el registro sencillo del ítem
dc.contributor.author | Konovalenko, Anatolii | es_ES |
dc.contributor.author | Reyes-Avendaño, Jorge A. | es_ES |
dc.contributor.author | Méndez-Blas, Antonio | es_ES |
dc.contributor.author | Cervera Moreno, Francisco Salvador | es_ES |
dc.contributor.author | Myslivets, Evgeny | es_ES |
dc.contributor.author | Radic, Stojan | es_ES |
dc.contributor.author | Sánchez-Dehesa Moreno-Cid, José | es_ES |
dc.contributor.author | Pérez-Rodríguez, Felipe | es_ES |
dc.date.accessioned | 2021-02-06T04:33:47Z | |
dc.date.available | 2021-02-06T04:33:47Z | |
dc.date.issued | 2019-08 | es_ES |
dc.identifier.issn | 2040-8978 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/160834 | |
dc.description.abstract | [EN] The nonlocal effective permittivity tensor for photonic crystals (PCs), having dielectric and metallic inclusions in the unit cell, is calculated and analyzed within the homogenization theory based on the Fourier formalism and the form-factor division approach. A method allowing us to extract the effective bianisotropic metamaterial parameters (permeability and chirality) from the wave vector dependence of the nonlocal effective dielectric response is proposed. Both the original nonlocal dielectric response parameters and the new bianisotropic metamaterial ones reproduce the photonic band structure of the artificial crystal far beyond the long wavelength limit and for a wide class of metal-dielectric structures. To calculate the optical spectra (reflection and transmission) of finite-size PC, the nonlocal homogenization approach is extended with the method of expansion into photonic bulk-modes (Bloch waves). The application of the developed theory is illustrated with well-known forms of metallic inclusions (slabs, thin wires, split-ring resonators) and experimentally confirmed with novel designs based on metallic crosses. | es_ES |
dc.description.sponsorship | This work was partially supported by Red-PRODEP, PRO-FOCIE, CONACYT (Grant No. CB-2011-01-166382), and VIEP-BUAP. Experimental measurements were carried out with support of Wave Phenomena Group of Universitat Politecnica de Valencia and Photonics Group of University of California San Diego. F C and J S-D acknowledge the financial support by the Ministerio de Economia y Competitividad of the Spanish government and the European Union Fondo Europeo de Desarrollo Regional (FEDER) (Grant No. TEC2014-53088-C3-1-R). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | IOP Publishing | es_ES |
dc.relation.ispartof | Journal of Optics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Metamaterials | es_ES |
dc.subject | Homogenization | es_ES |
dc.subject | Effective parameters | es_ES |
dc.subject | Bianisotropy | es_ES |
dc.subject | Negative refractive index | es_ES |
dc.subject | Photonic crystals | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Nonlocal electrodinamics of homogenized metal-dielectric photonic crystals | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1088/2040-8986/ab2a4e | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CONACyT//CB-2011-01-166382/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TEC2014-53088-C3-1-R/ES/DISPOSITIVOS PASIVOS BASADOS EN MATERIALES FUNCIONALES AVANZADOS CON RESONADORES DE ALTAS PRESTACIONES/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.description.bibliographicCitation | Konovalenko, A.; Reyes-Avendaño, JA.; Méndez-Blas, A.; Cervera Moreno, FS.; Myslivets, E.; Radic, S.; Sánchez-Dehesa Moreno-Cid, J.... (2019). Nonlocal electrodinamics of homogenized metal-dielectric photonic crystals. Journal of Optics. 21(8):1-16. https://doi.org/10.1088/2040-8986/ab2a4e | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1088/2040-8986/ab2a4e | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 16 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 21 | es_ES |
dc.description.issue | 8 | es_ES |
dc.relation.pasarela | S\391033 | es_ES |
dc.contributor.funder | Ministerio de Economía y Empresa | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Benemérita Universidad Autónoma de Puebla | es_ES |
dc.contributor.funder | Secretaría de Educación Pública, México | es_ES |
dc.contributor.funder | Consejo Nacional de Ciencia y Tecnología, México | es_ES |
dc.description.references | Smith, D. R., & Pendry, J. B. (2006). Homogenization of metamaterials by field averaging (invited paper). Journal of the Optical Society of America B, 23(3), 391. doi:10.1364/josab.23.000391 | es_ES |
dc.description.references | Silveirinha, M. G. (2006). Nonlocal homogenization model for a periodic array ofϵ-negative rods. Physical Review E, 73(4). doi:10.1103/physreve.73.046612 | es_ES |
dc.description.references | Halevi, P., Krokhin, A. A., & Arriaga, J. (1999). Photonic Crystal Optics and Homogenization of 2D Periodic Composites. Physical Review Letters, 82(4), 719-722. doi:10.1103/physrevlett.82.719 | es_ES |
dc.description.references | Ciattoni, A., & Rizza, C. (2015). Nonlocal homogenization theory in metamaterials: Effective electromagnetic spatial dispersion and artificial chirality. Physical Review B, 91(18). doi:10.1103/physrevb.91.184207 | es_ES |
dc.description.references | Krokhin, A. A., Arriaga, J., Gumen, L. N., & Drachev, V. P. (2016). High-frequency homogenization for layered hyperbolic metamaterials. Physical Review B, 93(7). doi:10.1103/physrevb.93.075418 | es_ES |
dc.description.references | Gorlach, M. A., Voytova, T. A., Lapine, M., Kivshar, Y. S., & Belov, P. A. (2016). Nonlocal homogenization for nonlinear metamaterials. Physical Review B, 93(16). doi:10.1103/physrevb.93.165125 | es_ES |
dc.description.references | Cerdán-Ramírez, V., Zenteno-Mateo, B., Sampedro, M. P., Palomino-Ovando, M. A., Flores-Desirena, B., & Pérez-Rodríguez, F. (2009). Anisotropy effects in homogenized magnetodielectric photonic crystals. Journal of Applied Physics, 106(10), 103520. doi:10.1063/1.3261758 | es_ES |
dc.description.references | Konovalenko, A., & Pérez-Rodríguez, F. (2017). Nonlocal response of tunable photonic metamaterials with semiconductor inclusions. Journal of the Optical Society of America B, 34(9), 2031. doi:10.1364/josab.34.002031 | es_ES |
dc.description.references | Lawrence, F. J., de Sterke, C. M., Botten, L. C., McPhedran, R. C., & Dossou, K. B. (2013). Modeling photonic crystal interfaces and stacks: impedance-based approaches. Advances in Optics and Photonics, 5(4), 385. doi:10.1364/aop.5.000385 | es_ES |
dc.description.references | Dossou, K. B., Botten, L. C., & Poulton, C. G. (2013). Semi-analytic impedance modeling of three-dimensional photonic and metamaterial structures. Journal of the Optical Society of America A, 30(10), 2034. doi:10.1364/josaa.30.002034 | es_ES |
dc.description.references | Shelby, R. A., Smith, D. R., & Schultz, S. (2001). Experimental Verification of a Negative Index of Refraction. Science, 292(5514), 77-79. doi:10.1126/science.1058847 | es_ES |
dc.description.references | Agranovich, V. M., & Ginzburg, V. (1984). Crystal Optics with Spatial Dispersion, and Excitons. Springer Series in Solid-State Sciences. doi:10.1007/978-3-662-02406-5 | es_ES |
dc.description.references | Reyes, J. A., Reyes-Avendaño, J. A., & Halevi, P. (2008). Electrical tuning of photonic crystals infilled with liquid crystals. Optics Communications, 281(9), 2535-2547. doi:10.1016/j.optcom.2007.12.073 | es_ES |
dc.description.references | Mochan, W. L., Ortiz, G. P., & Mendoza, B. S. (2010). Efficient homogenization procedure for the calculation of optical properties of 3D nanostructured composites. Optics Express, 18(21), 22119. doi:10.1364/oe.18.022119 | es_ES |
dc.description.references | Paredes-Juárez, A., Iakushev, D. A., Flores-Desirena, B., Makarov, N. M., & Pérez-Rodríguez, F. (2014). Nonlocal effect on optic spectrum of a periodic dielectric-metal stack. Optics Express, 22(7), 7581. doi:10.1364/oe.22.007581 | es_ES |
dc.description.references | Liu, Y., Guenneau, S., & Gralak, B. (2013). Causality and passivity properties of effective parameters of electromagnetic multilayered structures. Physical Review B, 88(16). doi:10.1103/physrevb.88.165104 | es_ES |
dc.description.references | Papadakis, G. T., Fleischman, D., Davoyan, A., Yeh, P., & Atwater, H. A. (2018). Optical magnetism in planar metamaterial heterostructures. Nature Communications, 9(1). doi:10.1038/s41467-017-02589-8 | es_ES |
dc.description.references | Pendry, J. B., Holden, A. J., Stewart, W. J., & Youngs, I. (1996). Extremely Low Frequency Plasmons in Metallic Mesostructures. Physical Review Letters, 76(25), 4773-4776. doi:10.1103/physrevlett.76.4773 | es_ES |
dc.description.references | Pendry, J. B., Holden, A. J., Robbins, D. J., & Stewart, W. J. (1998). Low frequency plasmons in thin-wire structures. Journal of Physics: Condensed Matter, 10(22), 4785-4809. doi:10.1088/0953-8984/10/22/007 | es_ES |
dc.description.references | Marqués, R., Medina, F., & Rafii-El-Idrissi, R. (2002). Role of bianisotropy in negative permeability and left-handed metamaterials. Physical Review B, 65(14). doi:10.1103/physrevb.65.144440 | es_ES |
dc.description.references | Konovalenko, A., Gutiérrez-Reyes, E., González, A. L., Flores-Méndez, J., & Pérez-Rodríguez, F. (2017). Nonlocal metasolid response of homogenized phononic crystals. Journal of Applied Physics, 121(15), 155102. doi:10.1063/1.4981129 | es_ES |