- -

Nonlocal electrodinamics of homogenized metal-dielectric photonic crystals

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Nonlocal electrodinamics of homogenized metal-dielectric photonic crystals

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Konovalenko, Anatolii es_ES
dc.contributor.author Reyes-Avendaño, Jorge A. es_ES
dc.contributor.author Méndez-Blas, Antonio es_ES
dc.contributor.author Cervera Moreno, Francisco Salvador es_ES
dc.contributor.author Myslivets, Evgeny es_ES
dc.contributor.author Radic, Stojan es_ES
dc.contributor.author Sánchez-Dehesa Moreno-Cid, José es_ES
dc.contributor.author Pérez-Rodríguez, Felipe es_ES
dc.date.accessioned 2021-02-06T04:33:47Z
dc.date.available 2021-02-06T04:33:47Z
dc.date.issued 2019-08 es_ES
dc.identifier.issn 2040-8978 es_ES
dc.identifier.uri http://hdl.handle.net/10251/160834
dc.description.abstract [EN] The nonlocal effective permittivity tensor for photonic crystals (PCs), having dielectric and metallic inclusions in the unit cell, is calculated and analyzed within the homogenization theory based on the Fourier formalism and the form-factor division approach. A method allowing us to extract the effective bianisotropic metamaterial parameters (permeability and chirality) from the wave vector dependence of the nonlocal effective dielectric response is proposed. Both the original nonlocal dielectric response parameters and the new bianisotropic metamaterial ones reproduce the photonic band structure of the artificial crystal far beyond the long wavelength limit and for a wide class of metal-dielectric structures. To calculate the optical spectra (reflection and transmission) of finite-size PC, the nonlocal homogenization approach is extended with the method of expansion into photonic bulk-modes (Bloch waves). The application of the developed theory is illustrated with well-known forms of metallic inclusions (slabs, thin wires, split-ring resonators) and experimentally confirmed with novel designs based on metallic crosses. es_ES
dc.description.sponsorship This work was partially supported by Red-PRODEP, PRO-FOCIE, CONACYT (Grant No. CB-2011-01-166382), and VIEP-BUAP. Experimental measurements were carried out with support of Wave Phenomena Group of Universitat Politecnica de Valencia and Photonics Group of University of California San Diego. F C and J S-D acknowledge the financial support by the Ministerio de Economia y Competitividad of the Spanish government and the European Union Fondo Europeo de Desarrollo Regional (FEDER) (Grant No. TEC2014-53088-C3-1-R). es_ES
dc.language Inglés es_ES
dc.publisher IOP Publishing es_ES
dc.relation.ispartof Journal of Optics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Metamaterials es_ES
dc.subject Homogenization es_ES
dc.subject Effective parameters es_ES
dc.subject Bianisotropy es_ES
dc.subject Negative refractive index es_ES
dc.subject Photonic crystals es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Nonlocal electrodinamics of homogenized metal-dielectric photonic crystals es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1088/2040-8986/ab2a4e es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CONACyT//CB-2011-01-166382/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2014-53088-C3-1-R/ES/DISPOSITIVOS PASIVOS BASADOS EN MATERIALES FUNCIONALES AVANZADOS CON RESONADORES DE ALTAS PRESTACIONES/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Konovalenko, A.; Reyes-Avendaño, JA.; Méndez-Blas, A.; Cervera Moreno, FS.; Myslivets, E.; Radic, S.; Sánchez-Dehesa Moreno-Cid, J.... (2019). Nonlocal electrodinamics of homogenized metal-dielectric photonic crystals. Journal of Optics. 21(8):1-16. https://doi.org/10.1088/2040-8986/ab2a4e es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1088/2040-8986/ab2a4e es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 16 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 21 es_ES
dc.description.issue 8 es_ES
dc.relation.pasarela S\391033 es_ES
dc.contributor.funder Ministerio de Economía y Empresa es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Benemérita Universidad Autónoma de Puebla es_ES
dc.contributor.funder Secretaría de Educación Pública, México es_ES
dc.contributor.funder Consejo Nacional de Ciencia y Tecnología, México es_ES
dc.description.references Smith, D. R., & Pendry, J. B. (2006). Homogenization of metamaterials by field averaging (invited paper). Journal of the Optical Society of America B, 23(3), 391. doi:10.1364/josab.23.000391 es_ES
dc.description.references Silveirinha, M. G. (2006). Nonlocal homogenization model for a periodic array ofϵ-negative rods. Physical Review E, 73(4). doi:10.1103/physreve.73.046612 es_ES
dc.description.references Halevi, P., Krokhin, A. A., & Arriaga, J. (1999). Photonic Crystal Optics and Homogenization of 2D Periodic Composites. Physical Review Letters, 82(4), 719-722. doi:10.1103/physrevlett.82.719 es_ES
dc.description.references Ciattoni, A., & Rizza, C. (2015). Nonlocal homogenization theory in metamaterials: Effective electromagnetic spatial dispersion and artificial chirality. Physical Review B, 91(18). doi:10.1103/physrevb.91.184207 es_ES
dc.description.references Krokhin, A. A., Arriaga, J., Gumen, L. N., & Drachev, V. P. (2016). High-frequency homogenization for layered hyperbolic metamaterials. Physical Review B, 93(7). doi:10.1103/physrevb.93.075418 es_ES
dc.description.references Gorlach, M. A., Voytova, T. A., Lapine, M., Kivshar, Y. S., & Belov, P. A. (2016). Nonlocal homogenization for nonlinear metamaterials. Physical Review B, 93(16). doi:10.1103/physrevb.93.165125 es_ES
dc.description.references Cerdán-Ramírez, V., Zenteno-Mateo, B., Sampedro, M. P., Palomino-Ovando, M. A., Flores-Desirena, B., & Pérez-Rodríguez, F. (2009). Anisotropy effects in homogenized magnetodielectric photonic crystals. Journal of Applied Physics, 106(10), 103520. doi:10.1063/1.3261758 es_ES
dc.description.references Konovalenko, A., & Pérez-Rodríguez, F. (2017). Nonlocal response of tunable photonic metamaterials with semiconductor inclusions. Journal of the Optical Society of America B, 34(9), 2031. doi:10.1364/josab.34.002031 es_ES
dc.description.references Lawrence, F. J., de Sterke, C. M., Botten, L. C., McPhedran, R. C., & Dossou, K. B. (2013). Modeling photonic crystal interfaces and stacks: impedance-based approaches. Advances in Optics and Photonics, 5(4), 385. doi:10.1364/aop.5.000385 es_ES
dc.description.references Dossou, K. B., Botten, L. C., & Poulton, C. G. (2013). Semi-analytic impedance modeling of three-dimensional photonic and metamaterial structures. Journal of the Optical Society of America A, 30(10), 2034. doi:10.1364/josaa.30.002034 es_ES
dc.description.references Shelby, R. A., Smith, D. R., & Schultz, S. (2001). Experimental Verification of a Negative Index of Refraction. Science, 292(5514), 77-79. doi:10.1126/science.1058847 es_ES
dc.description.references Agranovich, V. M., & Ginzburg, V. (1984). Crystal Optics with Spatial Dispersion, and Excitons. Springer Series in Solid-State Sciences. doi:10.1007/978-3-662-02406-5 es_ES
dc.description.references Reyes, J. A., Reyes-Avendaño, J. A., & Halevi, P. (2008). Electrical tuning of photonic crystals infilled with liquid crystals. Optics Communications, 281(9), 2535-2547. doi:10.1016/j.optcom.2007.12.073 es_ES
dc.description.references Mochan, W. L., Ortiz, G. P., & Mendoza, B. S. (2010). Efficient homogenization procedure for the calculation of optical properties of 3D nanostructured composites. Optics Express, 18(21), 22119. doi:10.1364/oe.18.022119 es_ES
dc.description.references Paredes-Juárez, A., Iakushev, D. A., Flores-Desirena, B., Makarov, N. M., & Pérez-Rodríguez, F. (2014). Nonlocal effect on optic spectrum of a periodic dielectric-metal stack. Optics Express, 22(7), 7581. doi:10.1364/oe.22.007581 es_ES
dc.description.references Liu, Y., Guenneau, S., & Gralak, B. (2013). Causality and passivity properties of effective parameters of electromagnetic multilayered structures. Physical Review B, 88(16). doi:10.1103/physrevb.88.165104 es_ES
dc.description.references Papadakis, G. T., Fleischman, D., Davoyan, A., Yeh, P., & Atwater, H. A. (2018). Optical magnetism in planar metamaterial heterostructures. Nature Communications, 9(1). doi:10.1038/s41467-017-02589-8 es_ES
dc.description.references Pendry, J. B., Holden, A. J., Stewart, W. J., & Youngs, I. (1996). Extremely Low Frequency Plasmons in Metallic Mesostructures. Physical Review Letters, 76(25), 4773-4776. doi:10.1103/physrevlett.76.4773 es_ES
dc.description.references Pendry, J. B., Holden, A. J., Robbins, D. J., & Stewart, W. J. (1998). Low frequency plasmons in thin-wire structures. Journal of Physics: Condensed Matter, 10(22), 4785-4809. doi:10.1088/0953-8984/10/22/007 es_ES
dc.description.references Marqués, R., Medina, F., & Rafii-El-Idrissi, R. (2002). Role of bianisotropy in negative permeability and left-handed metamaterials. Physical Review B, 65(14). doi:10.1103/physrevb.65.144440 es_ES
dc.description.references Konovalenko, A., Gutiérrez-Reyes, E., González, A. L., Flores-Méndez, J., & Pérez-Rodríguez, F. (2017). Nonlocal metasolid response of homogenized phononic crystals. Journal of Applied Physics, 121(15), 155102. doi:10.1063/1.4981129 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem