- -

Exploiting nested task-parallelism in the H-LU factorization

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Exploiting nested task-parallelism in the H-LU factorization

Mostrar el registro completo del ítem

Carratalá-Sáez, R.; Christophersen, S.; Aliaga, JI.; Beltrán, V.; Börm, S.; Quintana Ortí, ES. (2019). Exploiting nested task-parallelism in the H-LU factorization. Journal of Computational Science. 33:20-33. https://doi.org/10.1016/j.jocs.2019.02.004

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/160841

Ficheros en el ítem

Metadatos del ítem

Título: Exploiting nested task-parallelism in the H-LU factorization
Autor: Carratalá-Sáez, Rocío Christophersen, Sven Aliaga, José I. Beltrán, Vicenç Börm, Steffen Quintana Ortí, Enrique Salvador
Entidad UPV: Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors
Fecha difusión:
Resumen:
[EN] We address the parallelization of the LU factorization of hierarchical matrices (H-matrices) arising from boundary element methods. Our approach exploits task-parallelism via the OmpSs programming model and runtime, ...[+]
Palabras clave: Hierarchical linear algebra , LU factorization , Nested task-parallelism , Task dependencies , Multi-threading , Multicore processors , Boundary element methods (BEM)
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Journal of Computational Science. (issn: 1877-7503 )
DOI: 10.1016/j.jocs.2019.02.004
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.jocs.2019.02.004
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//TIN2014-53495-R/ES/COMPUTACION HETEROGENEA DE BAJO CONSUMO/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-82972-R/ES/TECNICAS ALGORITMICAS PARA COMPUTACION DE ALTO RENDIMIENTO CONSCIENTE DEL CONSUMO ENERGETICO Y RESISTENTE A ERRORES/
info:eu-repo/grantAgreement/UJI//UJI-B2017-46/
Agradecimientos:
The researchers from Universidad Jaume I (UJI) were supported by projects CICYT TIN2014-53495-R and TIN2017-82972-R of MINECO and FEDER; project UJI-B2017-46 of UJI; and the FPU program of MECD.
Tipo: Artículo

References

Hackbusch, W. (1999). A Sparse Matrix Arithmetic Based on $\Cal H$ -Matrices. Part I: Introduction to ${\Cal H}$ -Matrices. Computing, 62(2), 89-108. doi:10.1007/s006070050015

Grasedyck, L., & Hackbusch, W. (2003). Construction and Arithmetics of H -Matrices. Computing, 70(4), 295-334. doi:10.1007/s00607-003-0019-1

Dongarra, J. J., Du Croz, J., Hammarling, S., & Duff, I. S. (1990). A set of level 3 basic linear algebra subprograms. ACM Transactions on Mathematical Software, 16(1), 1-17. doi:10.1145/77626.79170 [+]
Hackbusch, W. (1999). A Sparse Matrix Arithmetic Based on $\Cal H$ -Matrices. Part I: Introduction to ${\Cal H}$ -Matrices. Computing, 62(2), 89-108. doi:10.1007/s006070050015

Grasedyck, L., & Hackbusch, W. (2003). Construction and Arithmetics of H -Matrices. Computing, 70(4), 295-334. doi:10.1007/s00607-003-0019-1

Dongarra, J. J., Du Croz, J., Hammarling, S., & Duff, I. S. (1990). A set of level 3 basic linear algebra subprograms. ACM Transactions on Mathematical Software, 16(1), 1-17. doi:10.1145/77626.79170

Buttari, A., Langou, J., Kurzak, J., & Dongarra, J. (2009). A class of parallel tiled linear algebra algorithms for multicore architectures. Parallel Computing, 35(1), 38-53. doi:10.1016/j.parco.2008.10.002

Quintana-Ortí, G., Quintana-Ortí, E. S., Geijn, R. A. V. D., Zee, F. G. V., & Chan, E. (2009). Programming matrix algorithms-by-blocks for thread-level parallelism. ACM Transactions on Mathematical Software, 36(3), 1-26. doi:10.1145/1527286.1527288

Badia, R. M., Herrero, J. R., Labarta, J., Pérez, J. M., Quintana-Ortí, E. S., & Quintana-Ortí, G. (2009). Parallelizing dense and banded linear algebra libraries using SMPSs. Concurrency and Computation: Practice and Experience, 21(18), 2438-2456. doi:10.1002/cpe.1463

Aliaga, J. I., Badia, R. M., Barreda, M., Bollhofer, M., & Quintana-Orti, E. S. (2014). Leveraging Task-Parallelism with OmpSs in ILUPACK’s Preconditioned CG Method. 2014 IEEE 26th International Symposium on Computer Architecture and High Performance Computing. doi:10.1109/sbac-pad.2014.24

Agullo, E., Buttari, A., Guermouche, A., & Lopez, F. (2016). Implementing Multifrontal Sparse Solvers for Multicore Architectures with Sequential Task Flow Runtime Systems. ACM Transactions on Mathematical Software, 43(2), 1-22. doi:10.1145/2898348

Aliaga, J. I., Carratala-Saez, R., Kriemann, R., & Quintana-Orti, E. S. (2017). Task-Parallel LU Factorization of Hierarchical Matrices Using OmpSs. 2017 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW). doi:10.1109/ipdpsw.2017.124

The OpenMP API specification for parallel programming, http://www.openmp.org/.

OmpSs project home page, http://pm.bsc.es/ompss.

Perez, J. M., Beltran, V., Labarta, J., & Ayguade, E. (2017). Improving the Integration of Task Nesting and Dependencies in OpenMP. 2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS). doi:10.1109/ipdps.2017.69

HLIBpro library home page, https://www.hlibpro.com/.

Bempp library home page, https://bempp.com/.

HACApK library github repository, https://github.com/hoshino-UTokyo/hacapk-gpu.

hmglib library github repository, https://github.com/zaspel/hmglib.

HiCMA library github repository, https://github.com/ecrc/hicma.

Hackbusch, W., & Börm, S. (2002). -matrix approximation of integral operators by interpolation. Applied Numerical Mathematics, 43(1-2), 129-143. doi:10.1016/s0168-9274(02)00121-6

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem