S. Amat, S. Busquier, S. Plaza, Review of some iterative root-finding methods from a dynamical point of view. Sci. Ser. A Math. Sci. 10, 3–35 (2004)
A.R. Amiri, A. Cordero, M.T. Darvishi, J.R. Torregrosa, Stability analysis of a parametric family of seventh-order iterative methods for solving nonlinear systems. Appl. Math. Comput. 323, 43–57 (2018)
A.R. Amiri, A. Cordero, M.T. Darvishi, J.R. Torregrosa, Preserving the order of convergence: low-complexity Jacobian-free iterative schemes for solving nonlinear systems. J. Comput. Appl. Math. 337, 87–97 (2018)
[+]
S. Amat, S. Busquier, S. Plaza, Review of some iterative root-finding methods from a dynamical point of view. Sci. Ser. A Math. Sci. 10, 3–35 (2004)
A.R. Amiri, A. Cordero, M.T. Darvishi, J.R. Torregrosa, Stability analysis of a parametric family of seventh-order iterative methods for solving nonlinear systems. Appl. Math. Comput. 323, 43–57 (2018)
A.R. Amiri, A. Cordero, M.T. Darvishi, J.R. Torregrosa, Preserving the order of convergence: low-complexity Jacobian-free iterative schemes for solving nonlinear systems. J. Comput. Appl. Math. 337, 87–97 (2018)
A.R. Amiri, A. Cordero, M.T. Darvishi , J.R. Torregrosa, Stability analysis of Jacobian-free Newton’s iterative method, in Proceedings of the 18th International Conference on Computational and Mathematical Methods in Science and Engineering, CMMSE 2018. ISBN 978-84-697-7861-6 (2018)
F.I. Chicharro, A. Cordero, J.R. Torregrosa, Drawing dynamical and parameter planes of iterative families and methods. Sci. World J. ID 780153 (2013)
A. Cordero, J.L. Hueso, E. Martínez, J.R. Torregrosa, A modified Newton–Jarratt’s composition. Numer. Algorithms 55, 87–99 (2010)
A. Cordero, E. Martínez, J.R. Torregrosa, Iterative methods of order four and five for systems of nonlinear equations. J. Comput. Appl. Math. 231(2), 541–551 (2009)
A. Cordero, F. Soleymani, J.R. Torregrosa, Dynamical analysis of iterative methods for nonlinear systems or how to deal with the dimension? Appl. Math. Comput. 244, 398–412 (2014)
A. Cordero, J.R. Torregrosa, P. Vindel, Dynamics of a family of Chebyshev–Halley type methods. Appl. Math. Comput. 219(16), 8568–8583 (2013)
A. Cordero, J.R. Torregrosa, Variants of Newton’s method using fifth order quadrature formulas. Appl. Math. Comput. 190, 686–698 (2007)
M. Grau-Sánchez, M. Noguera, S. Amat, On the approximation of derivatives using divided difference operators preserving the local convergence order of iterative methods. J. Comput. Appl. Math. 237, 363–372 (2013)
C.T. Kelley, Iterative Methods for Linear and Nonlinear Equations (SIAM, New York, 1995)
C.T. Kelley, Solution of the Chandrasekhar H-equation by Newton’s method. J. Math. Phys. 21, 1625–1628 (1980)
J.M. Ortega, W.C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables (Academic Press, New York, 1970)
R.C. Robinson, An Introduction to Dynamical Systems, Continuous and Discrete (American Mathematical Society, Providence, 2012)
J. Schröder, Nichtlineare Majoranten beim Verfahren der schrittweisen Näherung. Arch. Math. (Basel) 7(471–484), 541–551 (1956)
J.F. Traub, Iterative Methods for the Solution of Equations (Chelsea Publishing Company, New York, 1982)
[-]