Mostrar el registro sencillo del ítem
dc.contributor.author | Amiri, A. R. | es_ES |
dc.contributor.author | Cordero Barbero, Alicia | es_ES |
dc.contributor.author | Darvishi, M. T. | es_ES |
dc.contributor.author | Torregrosa Sánchez, Juan Ramón | es_ES |
dc.date.accessioned | 2021-02-06T04:34:07Z | |
dc.date.available | 2021-02-06T04:34:07Z | |
dc.date.issued | 2019-05 | es_ES |
dc.identifier.issn | 0259-9791 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/160845 | |
dc.description.abstract | [EN] The dynamical properties of a family of forward, central divided differences and Richardson extrapolation technique are studied. Applying these tools, an iterative method for solving nonlinear systems can be transformed in a Jacobian-free scheme. We analyze the dynamical behavior of new schemes obtained in this way on low degree polynomial systems. Several chemical problems are solved by using these new techniques, confirming the theoretical results. In one of these problems (Chandrasekhar H-equation), a degenerated case with singular Jacobian is analyzed, obtaining good results. | es_ES |
dc.description.sponsorship | This research was partially supported by Ministerio de Economia y Competitividad MTM2014-52016-C2-2-P and Generalitat Valenciana PROMETEO/2016/089. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Journal of Mathematical Chemistry | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Nonlinear system of equations | es_ES |
dc.subject | Iterative method | es_ES |
dc.subject | Jacobian-free scheme | es_ES |
dc.subject | Divided difference | es_ES |
dc.subject | Basin of attraction | es_ES |
dc.subject | Order of convergence | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Stability analysis of Jacobian-free iterative methods for solving nonlinear systems by using families of mth power divided differences | es_ES |
dc.type | Artículo | es_ES |
dc.type | Comunicación en congreso | es_ES |
dc.identifier.doi | 10.1007/s10910-018-0971-9 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2014-52016-C2-2-P/ES/DISEÑO DE METODOS ITERATIVOS EFICIENTES PARA RESOLVER PROBLEMAS NO LINEALES: CONVERGENCIA, COMPORTAMIENTO DINAMICO Y APLICACIONES. ECUACIONES MATRICIALES./ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F089/ES/Resolución de ecuaciones y sistemas no lineales mediante técnicas iterativas: análisis dinámico y aplicaciones/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Amiri, AR.; Cordero Barbero, A.; Darvishi, MT.; Torregrosa Sánchez, JR. (2019). Stability analysis of Jacobian-free iterative methods for solving nonlinear systems by using families of mth power divided differences. Journal of Mathematical Chemistry. 57(5):1344-1373. https://doi.org/10.1007/s10910-018-0971-9 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.conferencename | 18th International Conference on Computational and Mathematical Methods in Science and Engineering (CMMSE 2018) | es_ES |
dc.relation.conferencedate | Julio 09-14,2018 | es_ES |
dc.relation.conferenceplace | Rota, Spain | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s10910-018-0971-9 | es_ES |
dc.description.upvformatpinicio | 1344 | es_ES |
dc.description.upvformatpfin | 1373 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 57 | es_ES |
dc.description.issue | 5 | es_ES |
dc.relation.pasarela | S\393534 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | S. Amat, S. Busquier, S. Plaza, Review of some iterative root-finding methods from a dynamical point of view. Sci. Ser. A Math. Sci. 10, 3–35 (2004) | es_ES |
dc.description.references | A.R. Amiri, A. Cordero, M.T. Darvishi, J.R. Torregrosa, Stability analysis of a parametric family of seventh-order iterative methods for solving nonlinear systems. Appl. Math. Comput. 323, 43–57 (2018) | es_ES |
dc.description.references | A.R. Amiri, A. Cordero, M.T. Darvishi, J.R. Torregrosa, Preserving the order of convergence: low-complexity Jacobian-free iterative schemes for solving nonlinear systems. J. Comput. Appl. Math. 337, 87–97 (2018) | es_ES |
dc.description.references | A.R. Amiri, A. Cordero, M.T. Darvishi , J.R. Torregrosa, Stability analysis of Jacobian-free Newton’s iterative method, in Proceedings of the 18th International Conference on Computational and Mathematical Methods in Science and Engineering, CMMSE 2018. ISBN 978-84-697-7861-6 (2018) | es_ES |
dc.description.references | F.I. Chicharro, A. Cordero, J.R. Torregrosa, Drawing dynamical and parameter planes of iterative families and methods. Sci. World J. ID 780153 (2013) | es_ES |
dc.description.references | A. Cordero, J.L. Hueso, E. Martínez, J.R. Torregrosa, A modified Newton–Jarratt’s composition. Numer. Algorithms 55, 87–99 (2010) | es_ES |
dc.description.references | A. Cordero, E. Martínez, J.R. Torregrosa, Iterative methods of order four and five for systems of nonlinear equations. J. Comput. Appl. Math. 231(2), 541–551 (2009) | es_ES |
dc.description.references | A. Cordero, F. Soleymani, J.R. Torregrosa, Dynamical analysis of iterative methods for nonlinear systems or how to deal with the dimension? Appl. Math. Comput. 244, 398–412 (2014) | es_ES |
dc.description.references | A. Cordero, J.R. Torregrosa, P. Vindel, Dynamics of a family of Chebyshev–Halley type methods. Appl. Math. Comput. 219(16), 8568–8583 (2013) | es_ES |
dc.description.references | A. Cordero, J.R. Torregrosa, Variants of Newton’s method using fifth order quadrature formulas. Appl. Math. Comput. 190, 686–698 (2007) | es_ES |
dc.description.references | M. Grau-Sánchez, M. Noguera, S. Amat, On the approximation of derivatives using divided difference operators preserving the local convergence order of iterative methods. J. Comput. Appl. Math. 237, 363–372 (2013) | es_ES |
dc.description.references | C.T. Kelley, Iterative Methods for Linear and Nonlinear Equations (SIAM, New York, 1995) | es_ES |
dc.description.references | C.T. Kelley, Solution of the Chandrasekhar H-equation by Newton’s method. J. Math. Phys. 21, 1625–1628 (1980) | es_ES |
dc.description.references | J.M. Ortega, W.C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables (Academic Press, New York, 1970) | es_ES |
dc.description.references | R.C. Robinson, An Introduction to Dynamical Systems, Continuous and Discrete (American Mathematical Society, Providence, 2012) | es_ES |
dc.description.references | J. Schröder, Nichtlineare Majoranten beim Verfahren der schrittweisen Näherung. Arch. Math. (Basel) 7(471–484), 541–551 (1956) | es_ES |
dc.description.references | J.F. Traub, Iterative Methods for the Solution of Equations (Chelsea Publishing Company, New York, 1982) | es_ES |