- -

Stability analysis of Jacobian-free iterative methods for solving nonlinear systems by using families of mth power divided differences

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Stability analysis of Jacobian-free iterative methods for solving nonlinear systems by using families of mth power divided differences

Show simple item record

Files in this item

dc.contributor.author Amiri, A. R. es_ES
dc.contributor.author Cordero Barbero, Alicia es_ES
dc.contributor.author Darvishi, M. T. es_ES
dc.contributor.author Torregrosa Sánchez, Juan Ramón es_ES
dc.date.accessioned 2021-02-06T04:34:07Z
dc.date.available 2021-02-06T04:34:07Z
dc.date.issued 2019-05 es_ES
dc.identifier.issn 0259-9791 es_ES
dc.identifier.uri http://hdl.handle.net/10251/160845
dc.description.abstract [EN] The dynamical properties of a family of forward, central divided differences and Richardson extrapolation technique are studied. Applying these tools, an iterative method for solving nonlinear systems can be transformed in a Jacobian-free scheme. We analyze the dynamical behavior of new schemes obtained in this way on low degree polynomial systems. Several chemical problems are solved by using these new techniques, confirming the theoretical results. In one of these problems (Chandrasekhar H-equation), a degenerated case with singular Jacobian is analyzed, obtaining good results. es_ES
dc.description.sponsorship This research was partially supported by Ministerio de Economia y Competitividad MTM2014-52016-C2-2-P and Generalitat Valenciana PROMETEO/2016/089. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Journal of Mathematical Chemistry es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Nonlinear system of equations es_ES
dc.subject Iterative method es_ES
dc.subject Jacobian-free scheme es_ES
dc.subject Divided difference es_ES
dc.subject Basin of attraction es_ES
dc.subject Order of convergence es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Stability analysis of Jacobian-free iterative methods for solving nonlinear systems by using families of mth power divided differences es_ES
dc.type Artículo es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.1007/s10910-018-0971-9 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2014-52016-C2-2-P/ES/DISEÑO DE METODOS ITERATIVOS EFICIENTES PARA RESOLVER PROBLEMAS NO LINEALES: CONVERGENCIA, COMPORTAMIENTO DINAMICO Y APLICACIONES. ECUACIONES MATRICIALES./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F089/ES/Resolución de ecuaciones y sistemas no lineales mediante técnicas iterativas: análisis dinámico y aplicaciones/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Amiri, AR.; Cordero Barbero, A.; Darvishi, MT.; Torregrosa Sánchez, JR. (2019). Stability analysis of Jacobian-free iterative methods for solving nonlinear systems by using families of mth power divided differences. Journal of Mathematical Chemistry. 57(5):1344-1373. https://doi.org/10.1007/s10910-018-0971-9 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename 18th International Conference on Computational and Mathematical Methods in Science and Engineering (CMMSE 2018) es_ES
dc.relation.conferencedate Julio 09-14,2018 es_ES
dc.relation.conferenceplace Rota, Spain es_ES
dc.relation.publisherversion https://doi.org/10.1007/s10910-018-0971-9 es_ES
dc.description.upvformatpinicio 1344 es_ES
dc.description.upvformatpfin 1373 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 57 es_ES
dc.description.issue 5 es_ES
dc.relation.pasarela S\393534 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references S. Amat, S. Busquier, S. Plaza, Review of some iterative root-finding methods from a dynamical point of view. Sci. Ser. A Math. Sci. 10, 3–35 (2004) es_ES
dc.description.references A.R. Amiri, A. Cordero, M.T. Darvishi, J.R. Torregrosa, Stability analysis of a parametric family of seventh-order iterative methods for solving nonlinear systems. Appl. Math. Comput. 323, 43–57 (2018) es_ES
dc.description.references A.R. Amiri, A. Cordero, M.T. Darvishi, J.R. Torregrosa, Preserving the order of convergence: low-complexity Jacobian-free iterative schemes for solving nonlinear systems. J. Comput. Appl. Math. 337, 87–97 (2018) es_ES
dc.description.references A.R. Amiri, A. Cordero, M.T. Darvishi , J.R. Torregrosa, Stability analysis of Jacobian-free Newton’s iterative method, in Proceedings of the 18th International Conference on Computational and Mathematical Methods in Science and Engineering, CMMSE 2018. ISBN 978-84-697-7861-6 (2018) es_ES
dc.description.references F.I. Chicharro, A. Cordero, J.R. Torregrosa, Drawing dynamical and parameter planes of iterative families and methods. Sci. World J. ID 780153 (2013) es_ES
dc.description.references A. Cordero, J.L. Hueso, E. Martínez, J.R. Torregrosa, A modified Newton–Jarratt’s composition. Numer. Algorithms 55, 87–99 (2010) es_ES
dc.description.references A. Cordero, E. Martínez, J.R. Torregrosa, Iterative methods of order four and five for systems of nonlinear equations. J. Comput. Appl. Math. 231(2), 541–551 (2009) es_ES
dc.description.references A. Cordero, F. Soleymani, J.R. Torregrosa, Dynamical analysis of iterative methods for nonlinear systems or how to deal with the dimension? Appl. Math. Comput. 244, 398–412 (2014) es_ES
dc.description.references A. Cordero, J.R. Torregrosa, P. Vindel, Dynamics of a family of Chebyshev–Halley type methods. Appl. Math. Comput. 219(16), 8568–8583 (2013) es_ES
dc.description.references A. Cordero, J.R. Torregrosa, Variants of Newton’s method using fifth order quadrature formulas. Appl. Math. Comput. 190, 686–698 (2007) es_ES
dc.description.references M. Grau-Sánchez, M. Noguera, S. Amat, On the approximation of derivatives using divided difference operators preserving the local convergence order of iterative methods. J. Comput. Appl. Math. 237, 363–372 (2013) es_ES
dc.description.references C.T. Kelley, Iterative Methods for Linear and Nonlinear Equations (SIAM, New York, 1995) es_ES
dc.description.references C.T. Kelley, Solution of the Chandrasekhar H-equation by Newton’s method. J. Math. Phys. 21, 1625–1628 (1980) es_ES
dc.description.references J.M. Ortega, W.C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables (Academic Press, New York, 1970) es_ES
dc.description.references R.C. Robinson, An Introduction to Dynamical Systems, Continuous and Discrete (American Mathematical Society, Providence, 2012) es_ES
dc.description.references J. Schröder, Nichtlineare Majoranten beim Verfahren der schrittweisen Näherung. Arch. Math. (Basel) 7(471–484), 541–551 (1956) es_ES
dc.description.references J.F. Traub, Iterative Methods for the Solution of Equations (Chelsea Publishing Company, New York, 1982) es_ES


This item appears in the following Collection(s)

Show simple item record