Strand, J. . (1970). Random ordinary differential equations. Journal of Differential Equations, 7(3), 538-553. doi:10.1016/0022-0396(70)90100-2
Crandall, S. H. (1963). Perturbation Techniques for Random Vibration of Nonlinear Systems. The Journal of the Acoustical Society of America, 35(11), 1700-1705. doi:10.1121/1.1918792
Villafuerte, L., & Chen-Charpentier, B. M. (2012). A random differential transform method: Theory and applications. Applied Mathematics Letters, 25(10), 1490-1494. doi:10.1016/j.aml.2011.12.033
[+]
Strand, J. . (1970). Random ordinary differential equations. Journal of Differential Equations, 7(3), 538-553. doi:10.1016/0022-0396(70)90100-2
Crandall, S. H. (1963). Perturbation Techniques for Random Vibration of Nonlinear Systems. The Journal of the Acoustical Society of America, 35(11), 1700-1705. doi:10.1121/1.1918792
Villafuerte, L., & Chen-Charpentier, B. M. (2012). A random differential transform method: Theory and applications. Applied Mathematics Letters, 25(10), 1490-1494. doi:10.1016/j.aml.2011.12.033
Khan, Y., & Wu, Q. (2011). Homotopy perturbation transform method for nonlinear equations using He’s polynomials. Computers & Mathematics with Applications, 61(8), 1963-1967. doi:10.1016/j.camwa.2010.08.022
Khan, Y., Vázquez-Leal, H., & Wu, Q. (2012). An efficient iterated method for mathematical biology model. Neural Computing and Applications, 23(3-4), 677-682. doi:10.1007/s00521-012-0952-z
Xiu, D., & Karniadakis, G. E. (2002). The Wiener--Askey Polynomial Chaos for Stochastic Differential Equations. SIAM Journal on Scientific Computing, 24(2), 619-644. doi:10.1137/s1064827501387826
Chen-Charpentier, B.-M., Cortés, J.-C., Licea, J.-A., Romero, J.-V., Roselló, M.-D., Santonja, F.-J., & Villanueva, R.-J. (2015). Constructing adaptive generalized polynomial chaos method to measure the uncertainty in continuous models: A computational approach. Mathematics and Computers in Simulation, 109, 113-129. doi:10.1016/j.matcom.2014.09.002
Cortés, J.-C., Romero, J.-V., Roselló, M.-D., & Villanueva, R.-J. (2017). Improving adaptive generalized polynomial chaos method to solve nonlinear random differential equations by the random variable transformation technique. Communications in Nonlinear Science and Numerical Simulation, 50, 1-15. doi:10.1016/j.cnsns.2017.02.011
Ernst, O. G., Mugler, A., Starkloff, H.-J., & Ullmann, E. (2011). On the convergence of generalized polynomial chaos expansions. ESAIM: Mathematical Modelling and Numerical Analysis, 46(2), 317-339. doi:10.1051/m2an/2011045
Shi, W., & Zhang, C. (2012). Error analysis of generalized polynomial chaos for nonlinear random ordinary differential equations. Applied Numerical Mathematics, 62(12), 1954-1964. doi:10.1016/j.apnum.2012.08.007
Shi, W., & Zhang, C. (2017). Generalized polynomial chaos for nonlinear random delay differential equations. Applied Numerical Mathematics, 115, 16-31. doi:10.1016/j.apnum.2016.12.004
Calatayud, J., Cortés, J.-C., & Jornet, M. (2018). On the convergence of adaptive gPC for non-linear random difference equations: Theoretical analysis and some practical recommendations. Journal of Nonlinear Sciences and Applications, 11(09), 1077-1084. doi:10.22436/jnsa.011.09.06
Cortés, J.-C., Romero, J.-V., Roselló, M.-D., Santonja, F.-J., & Villanueva, R.-J. (2013). Solving Continuous Models with Dependent Uncertainty: A Computational Approach. Abstract and Applied Analysis, 2013, 1-10. doi:10.1155/2013/983839
Calatayud, J., Cortés, J. C., Jornet, M., & Villanueva, R. J. (2018). Computational uncertainty quantification for random time-discrete epidemiological models using adaptive gPC. Mathematical Methods in the Applied Sciences, 41(18), 9618-9627. doi:10.1002/mma.5315
Calatayud, J., Cortés, J.-C., & Jornet, M. (2019). Uncertainty quantification for nonlinear difference equations with dependent random inputs via a stochastic Galerkin projection technique. Communications in Nonlinear Science and Numerical Simulation, 72, 108-120. doi:10.1016/j.cnsns.2018.12.011
Dorini, F. A., Cecconello, M. S., & Dorini, L. B. (2016). On the logistic equation subject to uncertainties in the environmental carrying capacity and initial population density. Communications in Nonlinear Science and Numerical Simulation, 33, 160-173. doi:10.1016/j.cnsns.2015.09.009
Calatayud, J., Cortés, J.-C., & Jornet, M. (2018). The damped pendulum random differential equation: A comprehensive stochastic analysis via the computation of the probability density function. Physica A: Statistical Mechanics and its Applications, 512, 261-279. doi:10.1016/j.physa.2018.08.024
Calatayud, J., Cortés, J. C., & Jornet, M. (2018). Uncertainty quantification for random parabolic equations with nonhomogeneous boundary conditions on a bounded domain via the approximation of the probability density function. Mathematical Methods in the Applied Sciences, 42(17), 5649-5667. doi:10.1002/mma.5333
Jornet M., Calatayud J., Le Maître O.P., Cortés J.. Second order linear differential equations with analytic uncertainties: stochastic analysis via the computation of the probability density function. 2019. ArXiv:1909.05907.
Calatayud, J., Cortés, J.-C., Díaz, J. A., & Jornet, M. (2019). Density function of random differential equations via finite difference schemes: a theoretical analysis of a random diffusion-reaction Poisson-type problem. Stochastics, 92(4), 627-641. doi:10.1080/17442508.2019.1645849
Calatayud Gregori, J., Chen-Charpentier, B. M., Cortés López, J. C., & Jornet Sanz, M. (2019). Combining Polynomial Chaos Expansions and the Random Variable Transformation Technique to Approximate the Density Function of Stochastic Problems, Including Some Epidemiological Models. Symmetry, 11(1), 43. doi:10.3390/sym11010043
Hethcote, H. W. (2000). The Mathematics of Infectious Diseases. SIAM Review, 42(4), 599-653. doi:10.1137/s0036144500371907
Casabán, M.-C., Cortés, J.-C., Romero, J.-V., & Roselló, M.-D. (2015). Probabilistic solution of random SI-type epidemiological models using the Random Variable Transformation technique. Communications in Nonlinear Science and Numerical Simulation, 24(1-3), 86-97. doi:10.1016/j.cnsns.2014.12.016
Casabán, M.-C., Cortés, J.-C., Navarro-Quiles, A., Romero, J.-V., Roselló, M.-D., & Villanueva, R.-J. (2016). A comprehensive probabilistic solution of random SIS-type epidemiological models using the random variable transformation technique. Communications in Nonlinear Science and Numerical Simulation, 32, 199-210. doi:10.1016/j.cnsns.2015.08.009
Chen-Charpentier, B. M., & Stanescu, D. (2010). Epidemic models with random coefficients. Mathematical and Computer Modelling, 52(7-8), 1004-1010. doi:10.1016/j.mcm.2010.01.014
Trefethen, L. N. (2008). Is Gauss Quadrature Better than Clenshaw–Curtis? SIAM Review, 50(1), 67-87. doi:10.1137/060659831
Gerstner, T., & Griebel, M. (1998). Numerical Algorithms, 18(3/4), 209-232. doi:10.1023/a:1019129717644
Shvidler, M., & Karasaki, K. (2003). Transport in Porous Media, 50(3), 243-266. doi:10.1023/a:1021129325701
Dorini, F. A., & Cunha, M. C. C. (2011). On the linear advection equation subject to random velocity fields. Mathematics and Computers in Simulation, 82(4), 679-690. doi:10.1016/j.matcom.2011.10.008
[-]