- -

Computing the density function of complex models with randomness by using polynomial expansions and the RVT technique. Application to the SIR epidemic model

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Computing the density function of complex models with randomness by using polynomial expansions and the RVT technique. Application to the SIR epidemic model

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Calatayud, Julia es_ES
dc.contributor.author Cortés, J.-C. es_ES
dc.contributor.author Jornet, Marc es_ES
dc.date.accessioned 2021-02-09T04:31:29Z
dc.date.available 2021-02-09T04:31:29Z
dc.date.issued 2020-04 es_ES
dc.identifier.issn 0960-0779 es_ES
dc.identifier.uri http://hdl.handle.net/10251/160894
dc.description.abstract [EN] This paper concerns the computation of the probability density function of the stochastic solution to general complex systems with uncertainties formulated via random differential equations. In the existing literature, the uncertainty quantification for random differential equations is based on the approximation of statistical moments by simulation or spectral methods, or on the computation of the exact density function via the random variable transformation (RVT) method when a closed-form solution is available. However, the problem of approximating the density function in a general setting has not been published yet. In this paper, we propose a hybrid method based on stochastic polynomial expansions, the RVT technique, and multidimensional integration schemes, to obtain accurate approximations to the solution density function. A problem-independent algorithm is proposed. The algorithm is tested on the SIR (susceptible-infected-recovered) epidemiological model, showing significant improvements compared to the previous literature. es_ES
dc.description.sponsorship This work has been supported by the Spanish Ministerio de Economia y Competitividad grant MTM2017-89664-P. The author Marc Jornet acknowledges the doctorate scholarship granted by Programa de Ayudas de Investigacion y Desarrollo (PAID), Universitat Politecnica de Valencia. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Chaos, Solitons and Fractals es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Complex model with uncertainties es_ES
dc.subject Random differential equation es_ES
dc.subject Probability density function es_ES
dc.subject Stochastic polynomial expansion es_ES
dc.subject RVT technique es_ES
dc.subject SIR epidemic model es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Computing the density function of complex models with randomness by using polynomial expansions and the RVT technique. Application to the SIR epidemic model es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.chaos.2020.109639 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-89664-P/ES/PROBLEMAS DINAMICOS CON INCERTIDUMBRE SIMULABLE: MODELIZACION MATEMATICA, ANALISIS, COMPUTACION Y APLICACIONES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Calatayud, J.; Cortés, J.; Jornet, M. (2020). Computing the density function of complex models with randomness by using polynomial expansions and the RVT technique. Application to the SIR epidemic model. Chaos, Solitons and Fractals. 133:1-10. https://doi.org/10.1016/j.chaos.2020.109639 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.chaos.2020.109639 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 10 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 133 es_ES
dc.relation.pasarela S\400923 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Strand, J. . (1970). Random ordinary differential equations. Journal of Differential Equations, 7(3), 538-553. doi:10.1016/0022-0396(70)90100-2 es_ES
dc.description.references Crandall, S. H. (1963). Perturbation Techniques for Random Vibration of Nonlinear Systems. The Journal of the Acoustical Society of America, 35(11), 1700-1705. doi:10.1121/1.1918792 es_ES
dc.description.references Villafuerte, L., & Chen-Charpentier, B. M. (2012). A random differential transform method: Theory and applications. Applied Mathematics Letters, 25(10), 1490-1494. doi:10.1016/j.aml.2011.12.033 es_ES
dc.description.references Khan, Y., & Wu, Q. (2011). Homotopy perturbation transform method for nonlinear equations using He’s polynomials. Computers & Mathematics with Applications, 61(8), 1963-1967. doi:10.1016/j.camwa.2010.08.022 es_ES
dc.description.references Khan, Y., Vázquez-Leal, H., & Wu, Q. (2012). An efficient iterated method for mathematical biology model. Neural Computing and Applications, 23(3-4), 677-682. doi:10.1007/s00521-012-0952-z es_ES
dc.description.references Xiu, D., & Karniadakis, G. E. (2002). The Wiener--Askey Polynomial Chaos for Stochastic Differential Equations. SIAM Journal on Scientific Computing, 24(2), 619-644. doi:10.1137/s1064827501387826 es_ES
dc.description.references Chen-Charpentier, B.-M., Cortés, J.-C., Licea, J.-A., Romero, J.-V., Roselló, M.-D., Santonja, F.-J., & Villanueva, R.-J. (2015). Constructing adaptive generalized polynomial chaos method to measure the uncertainty in continuous models: A computational approach. Mathematics and Computers in Simulation, 109, 113-129. doi:10.1016/j.matcom.2014.09.002 es_ES
dc.description.references Cortés, J.-C., Romero, J.-V., Roselló, M.-D., & Villanueva, R.-J. (2017). Improving adaptive generalized polynomial chaos method to solve nonlinear random differential equations by the random variable transformation technique. Communications in Nonlinear Science and Numerical Simulation, 50, 1-15. doi:10.1016/j.cnsns.2017.02.011 es_ES
dc.description.references Ernst, O. G., Mugler, A., Starkloff, H.-J., & Ullmann, E. (2011). On the convergence of generalized polynomial chaos expansions. ESAIM: Mathematical Modelling and Numerical Analysis, 46(2), 317-339. doi:10.1051/m2an/2011045 es_ES
dc.description.references Shi, W., & Zhang, C. (2012). Error analysis of generalized polynomial chaos for nonlinear random ordinary differential equations. Applied Numerical Mathematics, 62(12), 1954-1964. doi:10.1016/j.apnum.2012.08.007 es_ES
dc.description.references Shi, W., & Zhang, C. (2017). Generalized polynomial chaos for nonlinear random delay differential equations. Applied Numerical Mathematics, 115, 16-31. doi:10.1016/j.apnum.2016.12.004 es_ES
dc.description.references Calatayud, J., Cortés, J.-C., & Jornet, M. (2018). On the convergence of adaptive gPC for non-linear random difference equations: Theoretical analysis and some practical recommendations. Journal of Nonlinear Sciences and Applications, 11(09), 1077-1084. doi:10.22436/jnsa.011.09.06 es_ES
dc.description.references Cortés, J.-C., Romero, J.-V., Roselló, M.-D., Santonja, F.-J., & Villanueva, R.-J. (2013). Solving Continuous Models with Dependent Uncertainty: A Computational Approach. Abstract and Applied Analysis, 2013, 1-10. doi:10.1155/2013/983839 es_ES
dc.description.references Calatayud, J., Cortés, J. C., Jornet, M., & Villanueva, R. J. (2018). Computational uncertainty quantification for random time-discrete epidemiological models using adaptive gPC. Mathematical Methods in the Applied Sciences, 41(18), 9618-9627. doi:10.1002/mma.5315 es_ES
dc.description.references Calatayud, J., Cortés, J.-C., & Jornet, M. (2019). Uncertainty quantification for nonlinear difference equations with dependent random inputs via a stochastic Galerkin projection technique. Communications in Nonlinear Science and Numerical Simulation, 72, 108-120. doi:10.1016/j.cnsns.2018.12.011 es_ES
dc.description.references Dorini, F. A., Cecconello, M. S., & Dorini, L. B. (2016). On the logistic equation subject to uncertainties in the environmental carrying capacity and initial population density. Communications in Nonlinear Science and Numerical Simulation, 33, 160-173. doi:10.1016/j.cnsns.2015.09.009 es_ES
dc.description.references Calatayud, J., Cortés, J.-C., & Jornet, M. (2018). The damped pendulum random differential equation: A comprehensive stochastic analysis via the computation of the probability density function. Physica A: Statistical Mechanics and its Applications, 512, 261-279. doi:10.1016/j.physa.2018.08.024 es_ES
dc.description.references Calatayud, J., Cortés, J. C., & Jornet, M. (2018). Uncertainty quantification for random parabolic equations with nonhomogeneous boundary conditions on a bounded domain via the approximation of the probability density function. Mathematical Methods in the Applied Sciences, 42(17), 5649-5667. doi:10.1002/mma.5333 es_ES
dc.description.references Jornet M., Calatayud J., Le Maître O.P., Cortés J.. Second order linear differential equations with analytic uncertainties: stochastic analysis via the computation of the probability density function. 2019. ArXiv:1909.05907. es_ES
dc.description.references Calatayud, J., Cortés, J.-C., Díaz, J. A., & Jornet, M. (2019). Density function of random differential equations via finite difference schemes: a theoretical analysis of a random diffusion-reaction Poisson-type problem. Stochastics, 92(4), 627-641. doi:10.1080/17442508.2019.1645849 es_ES
dc.description.references Calatayud Gregori, J., Chen-Charpentier, B. M., Cortés López, J. C., & Jornet Sanz, M. (2019). Combining Polynomial Chaos Expansions and the Random Variable Transformation Technique to Approximate the Density Function of Stochastic Problems, Including Some Epidemiological Models. Symmetry, 11(1), 43. doi:10.3390/sym11010043 es_ES
dc.description.references Hethcote, H. W. (2000). The Mathematics of Infectious Diseases. SIAM Review, 42(4), 599-653. doi:10.1137/s0036144500371907 es_ES
dc.description.references Casabán, M.-C., Cortés, J.-C., Romero, J.-V., & Roselló, M.-D. (2015). Probabilistic solution of random SI-type epidemiological models using the Random Variable Transformation technique. Communications in Nonlinear Science and Numerical Simulation, 24(1-3), 86-97. doi:10.1016/j.cnsns.2014.12.016 es_ES
dc.description.references Casabán, M.-C., Cortés, J.-C., Navarro-Quiles, A., Romero, J.-V., Roselló, M.-D., & Villanueva, R.-J. (2016). A comprehensive probabilistic solution of random SIS-type epidemiological models using the random variable transformation technique. Communications in Nonlinear Science and Numerical Simulation, 32, 199-210. doi:10.1016/j.cnsns.2015.08.009 es_ES
dc.description.references Chen-Charpentier, B. M., & Stanescu, D. (2010). Epidemic models with random coefficients. Mathematical and Computer Modelling, 52(7-8), 1004-1010. doi:10.1016/j.mcm.2010.01.014 es_ES
dc.description.references Trefethen, L. N. (2008). Is Gauss Quadrature Better than Clenshaw–Curtis? SIAM Review, 50(1), 67-87. doi:10.1137/060659831 es_ES
dc.description.references Gerstner, T., & Griebel, M. (1998). Numerical Algorithms, 18(3/4), 209-232. doi:10.1023/a:1019129717644 es_ES
dc.description.references Shvidler, M., & Karasaki, K. (2003). Transport in Porous Media, 50(3), 243-266. doi:10.1023/a:1021129325701 es_ES
dc.description.references Dorini, F. A., & Cunha, M. C. C. (2011). On the linear advection equation subject to random velocity fields. Mathematics and Computers in Simulation, 82(4), 679-690. doi:10.1016/j.matcom.2011.10.008 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem