- -

Use of Volcanic Powder as a Cement Replacement for the Development of Sustainable Mortars

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Use of Volcanic Powder as a Cement Replacement for the Development of Sustainable Mortars

Show full item record

Letelier, V.; Ortega, JM.; Tremiño, RM.; Henriquéz-Jara, BI.; Fustos, I.; Real-Herraiz, TP.; Moriconi, G.... (2020). Use of Volcanic Powder as a Cement Replacement for the Development of Sustainable Mortars. Applied Sciences. 10(4):1-19. https://doi.org/10.3390/app10041460

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/160895

Files in this item

Item Metadata

Title: Use of Volcanic Powder as a Cement Replacement for the Development of Sustainable Mortars
Author: Letelier, Viviana Ortega, José Marcos Tremiño, Rosa Maria Henriquéz-Jara, Bastián I. Fustos, Ivo Real-Herraiz, Teresa Pilar Moriconi, Giacomo Climent, Miguel Ángel Sánchez, Isidro
UPV Unit: Universitat Politècnica de València. Departamento de Mecánica de los Medios Continuos y Teoría de Estructuras - Departament de Mecànica dels Medis Continus i Teoria d'Estructures
Issued date:
Abstract:
[EN] Currently, reduction of environmental effects of the cement industry is an issue of global interest and one of the alternatives is to replace clinker with additions such as volcanic powder. The purpose of this work ...[+]
Subjects: Volcanic powder , Calbuco volcano , Sustainability , Microstructure , Durability , Mechanical properties , Impedance spectroscopy
Copyrigths: Reconocimiento (by)
Source:
Applied Sciences. (eissn: 2076-3417 )
DOI: 10.3390/app10041460
Publisher:
MDPI AG
Publisher version: https://doi.org/10.3390/app10041460
Project ID:
UFRO/DI19-0019
GV/GV/2019/070
MICINN/BIA2016-80982-R
Thanks:
This research was funded by the Universidad de La Frontera (Chile) (grant code DI19-0019, project entitled "Desarrollo de una dosificacion de morteros con baja conductividad termica para utilizar en prefabricados"), by the ...[+]
Type: Artículo

References

Hossain, M. U., Xuan, D., & Poon, C. S. (2017). Sustainable management and utilisation of concrete slurry waste: A case study in Hong Kong. Waste Management, 61, 397-404. doi:10.1016/j.wasman.2017.01.038

Labbaci, Y., Abdelaziz, Y., Mekkaoui, A., Alouani, A., & Labbaci, B. (2017). The use of the volcanic powders as supplementary cementitious materials for environmental-friendly durable concrete. Construction and Building Materials, 133, 468-481. doi:10.1016/j.conbuildmat.2016.12.088

Ghanbari, M., Monir Abbasi, A., & Ravanshadnia, M. (2017). Economic and Environmental Evaluation and Optimal Ratio of Natural and Recycled Aggregate Production. Advances in Materials Science and Engineering, 2017, 1-10. doi:10.1155/2017/7458285 [+]
Hossain, M. U., Xuan, D., & Poon, C. S. (2017). Sustainable management and utilisation of concrete slurry waste: A case study in Hong Kong. Waste Management, 61, 397-404. doi:10.1016/j.wasman.2017.01.038

Labbaci, Y., Abdelaziz, Y., Mekkaoui, A., Alouani, A., & Labbaci, B. (2017). The use of the volcanic powders as supplementary cementitious materials for environmental-friendly durable concrete. Construction and Building Materials, 133, 468-481. doi:10.1016/j.conbuildmat.2016.12.088

Ghanbari, M., Monir Abbasi, A., & Ravanshadnia, M. (2017). Economic and Environmental Evaluation and Optimal Ratio of Natural and Recycled Aggregate Production. Advances in Materials Science and Engineering, 2017, 1-10. doi:10.1155/2017/7458285

Ortega, J., Esteban, M., Rodríguez, R., Pastor, J., Ibanco, F., Sánchez, I., & Climent, M. (2017). Influence of Silica Fume Addition in the Long-Term Performance of Sustainable Cement Grouts for Micropiles Exposed to a Sulphate Aggressive Medium. Materials, 10(8), 890. doi:10.3390/ma10080890

Ortega, J. M., Letelier, V., Solas, C., Moriconi, G., Climent, M. Á., & Sánchez, I. (2018). Long-term effects of waste brick powder addition in the microstructure and service properties of mortars. Construction and Building Materials, 182, 691-702. doi:10.1016/j.conbuildmat.2018.06.161

Letelier, V., Ortega, J., Muñoz, P., Tarela, E., & Moriconi, G. (2018). Influence of Waste Brick Powder in the Mechanical Properties of Recycled Aggregate Concrete. Sustainability, 10(4), 1037. doi:10.3390/su10041037

Medina, C., Banfill, P. F. G., Sánchez de Rojas, M. I., & Frías, M. (2013). Rheological and calorimetric behaviour of cements blended with containing ceramic sanitary ware and construction/demolition waste. Construction and Building Materials, 40, 822-831. doi:10.1016/j.conbuildmat.2012.11.112

Celik, K., Meral, C., Petek Gursel, A., Mehta, P. K., Horvath, A., & Monteiro, P. J. M. (2015). Mechanical properties, durability, and life-cycle assessment of self-consolidating concrete mixtures made with blended portland cements containing fly ash and limestone powder. Cement and Concrete Composites, 56, 59-72. doi:10.1016/j.cemconcomp.2014.11.003

Cordeiro, G. C., Toledo Filho, R. D., Tavares, L. M., & Fairbairn, E. M. R. (2012). Experimental characterization of binary and ternary blended-cement concretes containing ultrafine residual rice husk and sugar cane bagasse ashes. Construction and Building Materials, 29, 641-646. doi:10.1016/j.conbuildmat.2011.08.095

Huntzinger, D. N., & Eatmon, T. D. (2009). A life-cycle assessment of Portland cement manufacturing: comparing the traditional process with alternative technologies. Journal of Cleaner Production, 17(7), 668-675. doi:10.1016/j.jclepro.2008.04.007

Stafford, F. N., Raupp-Pereira, F., Labrincha, J. A., & Hotza, D. (2016). Life cycle assessment of the production of cement: A Brazilian case study. Journal of Cleaner Production, 137, 1293-1299. doi:10.1016/j.jclepro.2016.07.050

Rajamma, R., Senff, L., Ribeiro, M. J., Labrincha, J. A., Ball, R. J., Allen, G. C., & Ferreira, V. M. (2015). Biomass fly ash effect on fresh and hardened state properties of cement based materials. Composites Part B: Engineering, 77, 1-9. doi:10.1016/j.compositesb.2015.03.019

Güneyisi, E., Gesoğlu, M., Akoi, A. O. M., & Mermerdaş, K. (2014). Combined effect of steel fiber and metakaolin incorporation on mechanical properties of concrete. Composites Part B: Engineering, 56, 83-91. doi:10.1016/j.compositesb.2013.08.002

Pastor, J. L., Ortega, J. M., Flor, M., López, M. P., Sánchez, I., & Climent, M. A. (2016). Microstructure and durability of fly ash cement grouts for micropiles. Construction and Building Materials, 117, 47-57. doi:10.1016/j.conbuildmat.2016.04.154

Ortega, J. M., Pastor, J. L., Albaladejo, A., Sánchez, I., & Climent, M. A. (2014). Durability and compressive strength of blast furnace slag-based cement grout for special geotechnical applications. Materiales de Construcción, 64(313), e003. doi:10.3989/mc.2014.04912

Ortega, J. M., Ferrandiz, V., Antón, C., Climent, M. A., & Sánchez, I. (2009). Influence of curing conditions on the mechanical properties and durability of cement mortars. Computational Methods and Experiments in Materials Characterisation IV. doi:10.2495/mc090361

Naceri, A., & Hamina, M. C. (2009). Use of waste brick as a partial replacement of cement in mortar. Waste Management, 29(8), 2378-2384. doi:10.1016/j.wasman.2009.03.026

Siddique, R. (2012). Properties of concrete made with volcanic ash. Resources, Conservation and Recycling, 66, 40-44. doi:10.1016/j.resconrec.2012.06.010

Habert, G., Choupay, N., Montel, J. M., Guillaume, D., & Escadeillas, G. (2008). Effects of the secondary minerals of the natural pozzolans on their pozzolanic activity. Cement and Concrete Research, 38(7), 963-975. doi:10.1016/j.cemconres.2008.02.005

Seddik Meddah, M. (2015). Durability performance and engineering properties of shale and volcanic ashes concretes. Construction and Building Materials, 79, 73-82. doi:10.1016/j.conbuildmat.2015.01.020

Hossain, K. M. A., & Lachemi, M. (2007). Strength, durability and micro-structural aspects of high performance volcanic ash concrete. Cement and Concrete Research, 37(5), 759-766. doi:10.1016/j.cemconres.2007.02.014

Kupwade-Patil, K., Al-Aibani, A. F., Abdulsalam, M. F., Mao, C., Bumajdad, A., Palkovic, S. D., & Büyüköztürk, O. (2016). Microstructure of cement paste with natural pozzolanic volcanic ash and Portland cement at different stages of curing. Construction and Building Materials, 113, 423-441. doi:10.1016/j.conbuildmat.2016.03.084

Kupwade-Patil, K., Palkovic, S. D., Bumajdad, A., Soriano, C., & Büyüköztürk, O. (2018). Use of silica fume and natural volcanic ash as a replacement to Portland cement: Micro and pore structural investigation using NMR, XRD, FTIR and X-ray microtomography. Construction and Building Materials, 158, 574-590. doi:10.1016/j.conbuildmat.2017.09.165

Hossain, K. M. (2005). Performance of Volcanic Ash Based Precast and In Situ Blended Cement Concretes in Marine Environment. Journal of Materials in Civil Engineering, 17(6), 694-702. doi:10.1061/(asce)0899-1561(2005)17:6(694)

Hossain, K. M. A. (2003). Blended cement using volcanic ash and pumice. Cement and Concrete Research, 33(10), 1601-1605. doi:10.1016/s0008-8846(03)00127-3

Kupwade-Patil, K., De Wolf, C., Chin, S., Ochsendorf, J., Hajiah, A. E., Al-Mumin, A., & Büyüköztürk, O. (2018). Impact of Embodied Energy on materials/buildings with partial replacement of ordinary Portland Cement (OPC) by natural Pozzolanic Volcanic Ash. Journal of Cleaner Production, 177, 547-554. doi:10.1016/j.jclepro.2017.12.234

Romero, J. E., Morgavi, D., Arzilli, F., Daga, R., Caselli, A., Reckziegel, F., … Perugini, D. (2016). Eruption dynamics of the 22–23 April 2015 Calbuco Volcano (Southern Chile): Analyses of tephra fall deposits. Journal of Volcanology and Geothermal Research, 317, 15-29. doi:10.1016/j.jvolgeores.2016.02.027

Reckziegel, F., Bustos, E., Mingari, L., Báez, W., Villarosa, G., Folch, A., … Osores, S. (2016). Forecasting volcanic ash dispersal and coeval resuspension during the April–May 2015 Calbuco eruption. Journal of Volcanology and Geothermal Research, 321, 44-57. doi:10.1016/j.jvolgeores.2016.04.033

Fraj, A. B., & Idir, R. (2017). Concrete based on recycled aggregates – Recycling and environmental analysis: A case study of paris’ region. Construction and Building Materials, 157, 952-964. doi:10.1016/j.conbuildmat.2017.09.059

OECD Climate Change Mitigation Policieshttp://www.compareyourcountry.org/climate-policies?cr=oecd{\&}lg=en{\&}page=2{\&}visited=1

Williams, M., Ortega, J., Sánchez, I., Cabeza, M., & Climent, M. (2017). Non-Destructive Study of the Microstructural Effects of Sodium and Magnesium Sulphate Attack on Mortars Containing Silica Fume Using Impedance Spectroscopy. Applied Sciences, 7(7), 648. doi:10.3390/app7070648

Cabeza, M., Merino, P., Miranda, A., Nóvoa, X. R., & Sanchez, I. (2002). Impedance spectroscopy study of hardened Portland cement paste. Cement and Concrete Research, 32(6), 881-891. doi:10.1016/s0008-8846(02)00720-2

Cabeza, M., Keddam, M., Nóvoa, X. R., Sánchez, I., & Takenouti, H. (2006). Impedance spectroscopy to characterize the pore structure during the hardening process of Portland cement paste. Electrochimica Acta, 51(8-9), 1831-1841. doi:10.1016/j.electacta.2005.02.125

Ortega, J. M., Sánchez, I., & Climent, M. A. (2015). Impedance spectroscopy study of the effect of environmental conditions in the microstructure development of OPC and slag cement mortars. Archives of Civil and Mechanical Engineering, 15(2), 569-583. doi:10.1016/j.acme.2014.06.002

Vladikova, D. (2002). Selectivity study of the differential impedance analysis—comparison with the complex non-linear least-squares method. Electrochimica Acta, 47(18), 2943-2951. doi:10.1016/s0013-4686(02)00187-1

Hammond, G. P., & Jones, C. I. (2008). Embodied energy and carbon in construction materials. Proceedings of the Institution of Civil Engineers - Energy, 161(2), 87-98. doi:10.1680/ener.2008.161.2.87

Letelier, V., Ortega, J., Tarela, E., Muñoz, P., Henríquez-Jara, B., & Moriconi, G. (2018). Mechanical Performance of Eco-Friendly Concretes with Volcanic Powder and Recycled Concrete Aggregates. Sustainability, 10(9), 3036. doi:10.3390/su10093036

Liu, Y., Sidhu, K. S., Chen, Z., & Yang, E.-H. (2018). Alkali-treated incineration bottom ash as supplementary cementitious materials. Construction and Building Materials, 179, 371-378. doi:10.1016/j.conbuildmat.2018.05.231

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record