- -

Use of Volcanic Powder as a Cement Replacement for the Development of Sustainable Mortars

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Use of Volcanic Powder as a Cement Replacement for the Development of Sustainable Mortars

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Letelier, Viviana es_ES
dc.contributor.author Ortega, José Marcos es_ES
dc.contributor.author Tremiño, Rosa Maria es_ES
dc.contributor.author Henriquéz-Jara, Bastián I. es_ES
dc.contributor.author Fustos, Ivo es_ES
dc.contributor.author Real-Herraiz, Teresa Pilar es_ES
dc.contributor.author Moriconi, Giacomo es_ES
dc.contributor.author Climent, Miguel Ángel es_ES
dc.contributor.author Sánchez, Isidro es_ES
dc.date.accessioned 2021-02-09T04:31:37Z
dc.date.available 2021-02-09T04:31:37Z
dc.date.issued 2020-02 es_ES
dc.identifier.uri http://hdl.handle.net/10251/160895
dc.description.abstract [EN] Currently, reduction of environmental effects of the cement industry is an issue of global interest and one of the alternatives is to replace clinker with additions such as volcanic powder. The purpose of this work is to study the influence of up to 400 hardening days of volcanic powder, obtained from the last eruption of the Calbuco volcano (Chile), on the pore structure, mechanical performance, and durability-related properties of mortars which incorporate up to 20% volcanic powder as a substitution for clinker. In addition, an evaluation of greenhouse gases emissions was performed in order to quantify the possible environmental benefits of incorporating the volcanic powder in the mortars. The results obtained indicated that mortars with contents of 10% and 20% of volcanic powder had adequate service properties and improved all durability-related properties overall as compared with those noted for ordinary Portland cement. Additionally, the use of up to 20% volcanic powder makes it possible to reduce the CO2 emissions of mortars by almost 20%, demonstrating the advantages of incorporating this addition in mortars. es_ES
dc.description.sponsorship This research was funded by the Universidad de La Frontera (Chile) (grant code DI19-0019, project entitled "Desarrollo de una dosificacion de morteros con baja conductividad termica para utilizar en prefabricados"), by the Conselleria de Educacion, Investigacion, Cultura y Deporte (at present renamed as Conselleria de Innovacion, Universidades, Ciencia y Sociedad Digital) de la Generalitat Valenciana (Spain) (grant code GV/2019/070), by the Spanish Agencia Estatal de Investigacion (grant code BIA2016-80982-R) and by the European Regional Development Fund (grant code BIA2016-80982-R). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Applied Sciences es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Volcanic powder es_ES
dc.subject Calbuco volcano es_ES
dc.subject Sustainability es_ES
dc.subject Microstructure es_ES
dc.subject Durability es_ES
dc.subject Mechanical properties es_ES
dc.subject Impedance spectroscopy es_ES
dc.subject.classification MECANICA DE LOS MEDIOS CONTINUOS Y TEORIA DE ESTRUCTURAS es_ES
dc.title Use of Volcanic Powder as a Cement Replacement for the Development of Sustainable Mortars es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/app10041460 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UFRO//DI19-0019/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//GV%2F2019%2F070/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BIA2016-80982-R/ES/APLICACION DE TECNICAS ULTRASONICAS NO LINEALES A LA DETECCION DE LA FISURACION EN HORMIGON/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Mecánica de los Medios Continuos y Teoría de Estructuras - Departament de Mecànica dels Medis Continus i Teoria d'Estructures es_ES
dc.description.bibliographicCitation Letelier, V.; Ortega, JM.; Tremiño, RM.; Henriquéz-Jara, BI.; Fustos, I.; Real-Herraiz, TP.; Moriconi, G.... (2020). Use of Volcanic Powder as a Cement Replacement for the Development of Sustainable Mortars. Applied Sciences. 10(4):1-19. https://doi.org/10.3390/app10041460 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/app10041460 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 19 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 4 es_ES
dc.identifier.eissn 2076-3417 es_ES
dc.relation.pasarela S\406040 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Universidad de la Frontera, Chile es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Hossain, M. U., Xuan, D., & Poon, C. S. (2017). Sustainable management and utilisation of concrete slurry waste: A case study in Hong Kong. Waste Management, 61, 397-404. doi:10.1016/j.wasman.2017.01.038 es_ES
dc.description.references Labbaci, Y., Abdelaziz, Y., Mekkaoui, A., Alouani, A., & Labbaci, B. (2017). The use of the volcanic powders as supplementary cementitious materials for environmental-friendly durable concrete. Construction and Building Materials, 133, 468-481. doi:10.1016/j.conbuildmat.2016.12.088 es_ES
dc.description.references Ghanbari, M., Monir Abbasi, A., & Ravanshadnia, M. (2017). Economic and Environmental Evaluation and Optimal Ratio of Natural and Recycled Aggregate Production. Advances in Materials Science and Engineering, 2017, 1-10. doi:10.1155/2017/7458285 es_ES
dc.description.references Ortega, J., Esteban, M., Rodríguez, R., Pastor, J., Ibanco, F., Sánchez, I., & Climent, M. (2017). Influence of Silica Fume Addition in the Long-Term Performance of Sustainable Cement Grouts for Micropiles Exposed to a Sulphate Aggressive Medium. Materials, 10(8), 890. doi:10.3390/ma10080890 es_ES
dc.description.references Ortega, J. M., Letelier, V., Solas, C., Moriconi, G., Climent, M. Á., & Sánchez, I. (2018). Long-term effects of waste brick powder addition in the microstructure and service properties of mortars. Construction and Building Materials, 182, 691-702. doi:10.1016/j.conbuildmat.2018.06.161 es_ES
dc.description.references Letelier, V., Ortega, J., Muñoz, P., Tarela, E., & Moriconi, G. (2018). Influence of Waste Brick Powder in the Mechanical Properties of Recycled Aggregate Concrete. Sustainability, 10(4), 1037. doi:10.3390/su10041037 es_ES
dc.description.references Medina, C., Banfill, P. F. G., Sánchez de Rojas, M. I., & Frías, M. (2013). Rheological and calorimetric behaviour of cements blended with containing ceramic sanitary ware and construction/demolition waste. Construction and Building Materials, 40, 822-831. doi:10.1016/j.conbuildmat.2012.11.112 es_ES
dc.description.references Celik, K., Meral, C., Petek Gursel, A., Mehta, P. K., Horvath, A., & Monteiro, P. J. M. (2015). Mechanical properties, durability, and life-cycle assessment of self-consolidating concrete mixtures made with blended portland cements containing fly ash and limestone powder. Cement and Concrete Composites, 56, 59-72. doi:10.1016/j.cemconcomp.2014.11.003 es_ES
dc.description.references Cordeiro, G. C., Toledo Filho, R. D., Tavares, L. M., & Fairbairn, E. M. R. (2012). Experimental characterization of binary and ternary blended-cement concretes containing ultrafine residual rice husk and sugar cane bagasse ashes. Construction and Building Materials, 29, 641-646. doi:10.1016/j.conbuildmat.2011.08.095 es_ES
dc.description.references Huntzinger, D. N., & Eatmon, T. D. (2009). A life-cycle assessment of Portland cement manufacturing: comparing the traditional process with alternative technologies. Journal of Cleaner Production, 17(7), 668-675. doi:10.1016/j.jclepro.2008.04.007 es_ES
dc.description.references Stafford, F. N., Raupp-Pereira, F., Labrincha, J. A., & Hotza, D. (2016). Life cycle assessment of the production of cement: A Brazilian case study. Journal of Cleaner Production, 137, 1293-1299. doi:10.1016/j.jclepro.2016.07.050 es_ES
dc.description.references Rajamma, R., Senff, L., Ribeiro, M. J., Labrincha, J. A., Ball, R. J., Allen, G. C., & Ferreira, V. M. (2015). Biomass fly ash effect on fresh and hardened state properties of cement based materials. Composites Part B: Engineering, 77, 1-9. doi:10.1016/j.compositesb.2015.03.019 es_ES
dc.description.references Güneyisi, E., Gesoğlu, M., Akoi, A. O. M., & Mermerdaş, K. (2014). Combined effect of steel fiber and metakaolin incorporation on mechanical properties of concrete. Composites Part B: Engineering, 56, 83-91. doi:10.1016/j.compositesb.2013.08.002 es_ES
dc.description.references Pastor, J. L., Ortega, J. M., Flor, M., López, M. P., Sánchez, I., & Climent, M. A. (2016). Microstructure and durability of fly ash cement grouts for micropiles. Construction and Building Materials, 117, 47-57. doi:10.1016/j.conbuildmat.2016.04.154 es_ES
dc.description.references Ortega, J. M., Pastor, J. L., Albaladejo, A., Sánchez, I., & Climent, M. A. (2014). Durability and compressive strength of blast furnace slag-based cement grout for special geotechnical applications. Materiales de Construcción, 64(313), e003. doi:10.3989/mc.2014.04912 es_ES
dc.description.references Ortega, J. M., Ferrandiz, V., Antón, C., Climent, M. A., & Sánchez, I. (2009). Influence of curing conditions on the mechanical properties and durability of cement mortars. Computational Methods and Experiments in Materials Characterisation IV. doi:10.2495/mc090361 es_ES
dc.description.references Naceri, A., & Hamina, M. C. (2009). Use of waste brick as a partial replacement of cement in mortar. Waste Management, 29(8), 2378-2384. doi:10.1016/j.wasman.2009.03.026 es_ES
dc.description.references Siddique, R. (2012). Properties of concrete made with volcanic ash. Resources, Conservation and Recycling, 66, 40-44. doi:10.1016/j.resconrec.2012.06.010 es_ES
dc.description.references Habert, G., Choupay, N., Montel, J. M., Guillaume, D., & Escadeillas, G. (2008). Effects of the secondary minerals of the natural pozzolans on their pozzolanic activity. Cement and Concrete Research, 38(7), 963-975. doi:10.1016/j.cemconres.2008.02.005 es_ES
dc.description.references Seddik Meddah, M. (2015). Durability performance and engineering properties of shale and volcanic ashes concretes. Construction and Building Materials, 79, 73-82. doi:10.1016/j.conbuildmat.2015.01.020 es_ES
dc.description.references Hossain, K. M. A., & Lachemi, M. (2007). Strength, durability and micro-structural aspects of high performance volcanic ash concrete. Cement and Concrete Research, 37(5), 759-766. doi:10.1016/j.cemconres.2007.02.014 es_ES
dc.description.references Kupwade-Patil, K., Al-Aibani, A. F., Abdulsalam, M. F., Mao, C., Bumajdad, A., Palkovic, S. D., & Büyüköztürk, O. (2016). Microstructure of cement paste with natural pozzolanic volcanic ash and Portland cement at different stages of curing. Construction and Building Materials, 113, 423-441. doi:10.1016/j.conbuildmat.2016.03.084 es_ES
dc.description.references Kupwade-Patil, K., Palkovic, S. D., Bumajdad, A., Soriano, C., & Büyüköztürk, O. (2018). Use of silica fume and natural volcanic ash as a replacement to Portland cement: Micro and pore structural investigation using NMR, XRD, FTIR and X-ray microtomography. Construction and Building Materials, 158, 574-590. doi:10.1016/j.conbuildmat.2017.09.165 es_ES
dc.description.references Hossain, K. M. (2005). Performance of Volcanic Ash Based Precast and In Situ Blended Cement Concretes in Marine Environment. Journal of Materials in Civil Engineering, 17(6), 694-702. doi:10.1061/(asce)0899-1561(2005)17:6(694) es_ES
dc.description.references Hossain, K. M. A. (2003). Blended cement using volcanic ash and pumice. Cement and Concrete Research, 33(10), 1601-1605. doi:10.1016/s0008-8846(03)00127-3 es_ES
dc.description.references Kupwade-Patil, K., De Wolf, C., Chin, S., Ochsendorf, J., Hajiah, A. E., Al-Mumin, A., & Büyüköztürk, O. (2018). Impact of Embodied Energy on materials/buildings with partial replacement of ordinary Portland Cement (OPC) by natural Pozzolanic Volcanic Ash. Journal of Cleaner Production, 177, 547-554. doi:10.1016/j.jclepro.2017.12.234 es_ES
dc.description.references Romero, J. E., Morgavi, D., Arzilli, F., Daga, R., Caselli, A., Reckziegel, F., … Perugini, D. (2016). Eruption dynamics of the 22–23 April 2015 Calbuco Volcano (Southern Chile): Analyses of tephra fall deposits. Journal of Volcanology and Geothermal Research, 317, 15-29. doi:10.1016/j.jvolgeores.2016.02.027 es_ES
dc.description.references Reckziegel, F., Bustos, E., Mingari, L., Báez, W., Villarosa, G., Folch, A., … Osores, S. (2016). Forecasting volcanic ash dispersal and coeval resuspension during the April–May 2015 Calbuco eruption. Journal of Volcanology and Geothermal Research, 321, 44-57. doi:10.1016/j.jvolgeores.2016.04.033 es_ES
dc.description.references Fraj, A. B., & Idir, R. (2017). Concrete based on recycled aggregates – Recycling and environmental analysis: A case study of paris’ region. Construction and Building Materials, 157, 952-964. doi:10.1016/j.conbuildmat.2017.09.059 es_ES
dc.description.references OECD Climate Change Mitigation Policieshttp://www.compareyourcountry.org/climate-policies?cr=oecd{\&}lg=en{\&}page=2{\&}visited=1 es_ES
dc.description.references Williams, M., Ortega, J., Sánchez, I., Cabeza, M., & Climent, M. (2017). Non-Destructive Study of the Microstructural Effects of Sodium and Magnesium Sulphate Attack on Mortars Containing Silica Fume Using Impedance Spectroscopy. Applied Sciences, 7(7), 648. doi:10.3390/app7070648 es_ES
dc.description.references Cabeza, M., Merino, P., Miranda, A., Nóvoa, X. R., & Sanchez, I. (2002). Impedance spectroscopy study of hardened Portland cement paste. Cement and Concrete Research, 32(6), 881-891. doi:10.1016/s0008-8846(02)00720-2 es_ES
dc.description.references Cabeza, M., Keddam, M., Nóvoa, X. R., Sánchez, I., & Takenouti, H. (2006). Impedance spectroscopy to characterize the pore structure during the hardening process of Portland cement paste. Electrochimica Acta, 51(8-9), 1831-1841. doi:10.1016/j.electacta.2005.02.125 es_ES
dc.description.references Ortega, J. M., Sánchez, I., & Climent, M. A. (2015). Impedance spectroscopy study of the effect of environmental conditions in the microstructure development of OPC and slag cement mortars. Archives of Civil and Mechanical Engineering, 15(2), 569-583. doi:10.1016/j.acme.2014.06.002 es_ES
dc.description.references Vladikova, D. (2002). Selectivity study of the differential impedance analysis—comparison with the complex non-linear least-squares method. Electrochimica Acta, 47(18), 2943-2951. doi:10.1016/s0013-4686(02)00187-1 es_ES
dc.description.references Hammond, G. P., & Jones, C. I. (2008). Embodied energy and carbon in construction materials. Proceedings of the Institution of Civil Engineers - Energy, 161(2), 87-98. doi:10.1680/ener.2008.161.2.87 es_ES
dc.description.references Letelier, V., Ortega, J., Tarela, E., Muñoz, P., Henríquez-Jara, B., & Moriconi, G. (2018). Mechanical Performance of Eco-Friendly Concretes with Volcanic Powder and Recycled Concrete Aggregates. Sustainability, 10(9), 3036. doi:10.3390/su10093036 es_ES
dc.description.references Liu, Y., Sidhu, K. S., Chen, Z., & Yang, E.-H. (2018). Alkali-treated incineration bottom ash as supplementary cementitious materials. Construction and Building Materials, 179, 371-378. doi:10.1016/j.conbuildmat.2018.05.231 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem