Portland Cement Association, https://www.cement.org/learn/concrete-technology/concrete-design-production/ultra-high-performance-concrete, Consultation on 01/11/2018.
De Larrard, F., & Sedran, T. (1994). Optimization of ultra-high-performance concrete by the use of a packing model. Cement and Concrete Research, 24(6), 997-1009. doi:10.1016/0008-8846(94)90022-1
Graybeal, B. A. (2014). Ultra-high-performance concrete connections for precast concrete bridge decks. PCI Journal, 59(4), 48-62. doi:10.15554/pcij.09012014.48.62
[+]
Portland Cement Association, https://www.cement.org/learn/concrete-technology/concrete-design-production/ultra-high-performance-concrete, Consultation on 01/11/2018.
De Larrard, F., & Sedran, T. (1994). Optimization of ultra-high-performance concrete by the use of a packing model. Cement and Concrete Research, 24(6), 997-1009. doi:10.1016/0008-8846(94)90022-1
Graybeal, B. A. (2014). Ultra-high-performance concrete connections for precast concrete bridge decks. PCI Journal, 59(4), 48-62. doi:10.15554/pcij.09012014.48.62
A. Naaman, High performance fiber reinforced cement composites, in: Proceedings of the IABSE symposium on concrete structures for the future, 1987, pp. 371–376.
M. Reichel, B. Freytag, L. Sparowitz, Road Bridge WILD-UHPFRC for a segmental arch structure. BFUP 2009/UHPFRC 2009 Proceedings.
Lopez, J. A., Serna, P., Camacho, E., Coll, H., & Navarro-Gregori, J. (2014). First Ultra-High-Performance Fibre-Reinforced Concrete Footbridge in Spain: Design and Construction. Structural Engineering International, 24(1), 101-104. doi:10.2749/101686614x13830788505793
Walraven, J. C. (2009). High performance fiber reinforced concrete: progress in knowledge and design codes. Materials and Structures, 42(9). doi:10.1617/s11527-009-9538-3
Federal Highway Administration (FHWA), Publication No. FHWA-HRT-13-060 Ultra-High Performance Concrete: A State-of-the-Art Report for the Bridge Community, 2013.
Kim, G.-Y., Choi, J.-I., Park, S.-E., Kim, H., Lee, Y., & Lee, B. Y. (2018). Response of UHPFRC and HDFRC under static and high-velocity projectile impact loads. Construction and Building Materials, 188, 399-408. doi:10.1016/j.conbuildmat.2018.08.135
Krahl, P. A., de Miranda Saleme Gidrão, G., & Carrazedo, R. (2018). Compressive behavior of UHPFRC under quasi-static and seismic strain rates considering the effect of fiber content. Construction and Building Materials, 188, 633-644. doi:10.1016/j.conbuildmat.2018.08.121
Kahanji, C., Ali, F., Nadjai, A., & Alam, N. (2018). Effect of curing temperature on the behaviour of UHPFRC at elevated temperatures. Construction and Building Materials, 182, 670-681. doi:10.1016/j.conbuildmat.2018.06.163
Foglar, M., Hajek, R., Fladr, J., Pachman, J., & Stoller, J. (2017). Full-scale experimental testing of the blast resistance of HPFRC and UHPFRC bridge decks. Construction and Building Materials, 145, 588-601. doi:10.1016/j.conbuildmat.2017.04.054
Buratti, N., Mazzotti, C., & Savoia, M. (2011). Post-cracking behaviour of steel and macro-synthetic fibre-reinforced concretes. Construction and Building Materials, 25(5), 2713-2722. doi:10.1016/j.conbuildmat.2010.12.022
López, J. Á., Serna, P., Navarro-Gregori, J., & Camacho, E. (2014). An inverse analysis method based on deflection to curvature transformation to determine the tensile properties of UHPFRC. Materials and Structures, 48(11), 3703-3718. doi:10.1617/s11527-014-0434-0
Li, W., Huang, Z., Hu, G., Hui Duan, W., & Shah, S. P. (2017). Early-age shrinkage development of ultra-high-performance concrete under heat curing treatment. Construction and Building Materials, 131, 767-774. doi:10.1016/j.conbuildmat.2016.11.024
Xu, Y., Liu, J., Liu, J., Zhang, P., Zhang, Q., & Jiang, L. (2018). Experimental studies and modeling of creep of UHPC. Construction and Building Materials, 175, 643-652. doi:10.1016/j.conbuildmat.2018.04.157
Association Française de Genie Civil (AFGC), Ultra-High Performance Fiber Reinforced Concretes. Recommendations, 2013.
Japanese Society of Civil Engineers (JSCE), Recommendations for Design and Construction of Ultra High Strength Fiber Reinforced Concrete Structures (Draft). Subcommittee on Research of Ultra High Strength Fiber Reinforced Concrete, 2006. Tokyo, Japan.
Plizzari, G., & Serna, P. (2018). Structural effects of FRC creep. Materials and Structures, 51(6). doi:10.1617/s11527-018-1290-0
Garas, V. Y., Kahn, L. F., & Kurtis, K. E. (2009). Short-term tensile creep and shrinkage of ultra-high performance concrete. Cement and Concrete Composites, 31(3), 147-152. doi:10.1016/j.cemconcomp.2009.01.002
Kamen, A., Denarié, E., Sadouki, H., & Brühwiler, E. (2008). UHPFRC tensile creep at early age. Materials and Structures, 42(1), 113-122. doi:10.1617/s11527-008-9371-0
Switek-Rey, A., Denarié, E., & Brühwiler, E. (2016). Early age creep and relaxation of UHPFRC under low to high tensile stresses. Cement and Concrete Research, 83, 57-69. doi:10.1016/j.cemconres.2016.01.005
Garas, V. Y., Kurtis, K. E., & Kahn, L. F. (2012). Creep of UHPC in tension and compression: Effect of thermal treatment. Cement and Concrete Composites, 34(4), 493-502. doi:10.1016/j.cemconcomp.2011.12.002
D. Casucci, C. Thiele, J. Schnell, Behavior of cracked cross-section of fibre reinforced UHPFRC under sustained load. In: Serna, P, Cavalaro, S., Llano-Torre, A. (Eds.), Proceedings of the International RILEM Workshop FRC-CREEP 2016 “Creep Behaviour in Cracked Sections of Fibre Reinforced Concrete”, Valencia, 2016, RILEM Bookseries 14, ISBN 978-94-024-1000-6.
E. Galeote, A. Blanco, A. de la Fuente, S.H.P. Cavalaro, Creep behaviour of cracked high performance fibre reinforced concrete beams under flexural load. In: Serna, P, Cavalaro, S., Llano-Torre, A. (Eds.), Proceedings of the International RILEM Workshop FRC-CREEP 2016 “Creep Behaviour in Cracked Sections of Fibre Reinforced Concrete”, Valencia, 2016, RILEM Bookseries 14, ISBN 978-94-024-1000-6.
T. Nishiwaki, S. Kwon, H. Otaki, G. Igarashi, F.UA. Shaikh, A.P. Fantilli, Experimental study on time-dependent behavior of cracked UHP-FRCC under sustained loads. In: Serna, P, Cavalaro, S. Llano-Torre, A. (Eds.), Proceedings of the International RILEM Workshop FRC-CREEP 2016 “Creep Behaviour in Cracked Sections of Fibre Reinforced Concrete”, Valencia, 2016, RILEM Bookseries 14, ISBN 978-94-024-1000-6.
European Committee for Standardization, European Standard EN179-1:201, Cement – Part 1: Composition, specifications and conformity criteria for common cements, Brussels, 2011.
European Committee for Standardization, European Standard EN 14651:2007: Test method for metallic fibered concrete – Measuring the flexural tensile strength (limit of proportionality (LOP), residual), Brussels, 2007.
European Committee for Standardization, European Standard EN 12390-3:2009, Testing hardened concrete – Part 3: Compressive strength of test specimens, Brussels, 20097.
Arango, S. E., Serna, P., Martí-Vargas, J. R., & García-Taengua, E. (2011). A Test Method to Characterize Flexural Creep Behaviour of Pre-cracked FRC Specimens. Experimental Mechanics, 52(8), 1067-1078. doi:10.1007/s11340-011-9556-2
García-Taengua, E., Arango, S., Martí-Vargas, J. R., & Serna, P. (2014). Flexural creep of steel fiber reinforced concrete in the cracked state. Construction and Building Materials, 65, 321-329. doi:10.1016/j.conbuildmat.2014.04.139
Serna Ros, P., Martí-Vargas, J. R., Bossio, M. E., & Zerbino, R. (2016). Creep and residual properties of cracked macro-synthetic fibre reinforced concretes. Magazine of Concrete Research, 68(4), 197-207. doi:10.1680/macr.15.00111
Monetti, D. H., Llano-Torre, A., Torrijos, M. C., Giaccio, G., Zerbino, R., Martí-Vargas, J. R., & Serna, P. (2019). Long-term behavior of cracked fiber reinforced concrete under service conditions. Construction and Building Materials, 196, 649-658. doi:10.1016/j.conbuildmat.2018.10.230
[-]