Mostrar el registro sencillo del ítem
dc.contributor.author | Llano-Torre, Aitor![]() |
es_ES |
dc.contributor.author | Martí Vargas, José Rocío![]() |
es_ES |
dc.contributor.author | Serna Ros, Pedro![]() |
es_ES |
dc.date.accessioned | 2021-02-09T04:31:40Z | |
dc.date.available | 2021-02-09T04:31:40Z | |
dc.date.issued | 2020-05-30 | es_ES |
dc.identifier.issn | 0950-0618 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/160896 | |
dc.description.abstract | [EN] The long term behavior of Ultra High Performance Fiber Reinforced Concrete (UHPFRC) is analyzed in this study. The experimental campaign covered creep in compression and creep in flexure in cracked state. Three types of specimens were cast: cylindrical specimens (empty set100 x 200 mm) for compressive creep and shrinkage, and prismatic specimens type regular "R" (150 x 150 x 600 mm) and type slim "S" (150 x 40 x 600 mm) for flexural creep in cracked state. Specimens R were notched up to 50 mm in depth to weak the central section and then pre-cracked until 0.65 mm of Crack Mouth Opening Displacement (CMOD). Specimens S were pre-cracked unnotched until a loss of 50% of stiffness was observed. Flexural creep tests were performed during 270 days under load, and until 360 days the compressive tests. Measurements from three experimental sources were obtained: CMOD, compressive strains on top of prismatic specimens and longitudinal compressive strains in cylindrical specimens. Creep coefficients and parameters related with deferred deformations velocity were obtained from all three sources. Creep coefficients under flexure at 270 days ranged from 0.62 to 1.20 in the tensile zone, and from 0.72 to 0.90 in the compressive zone. Creep coefficient in compression at one year was 1.07, which is consistent with values found in the literature. Deferred deformations velocities at early ages were greater in specimens R than in specimens S, and a secondary creep stage was achieved in all specimens after 210 days of sustained loading. | es_ES |
dc.description.sponsorship | The authors wish to thank the technicians of ICITECH, where the experimental work was developed. The financial support of the project BIA2016-78460-C3-1-R "Bases para el diseno de estructuras sostenibles de hormigon de muy alto rendimiento a nivel prenormativo/Diseno eficiente de estructuras de HMAR", supported by the Ministry of Economy and Competitiveness (Spain) and the European Regional Development Fund (European Union), is also gratefully acknowledged. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Construction and Building Materials | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Ultra-High Performance Fiber Reinforced | es_ES |
dc.subject | Concrete | es_ES |
dc.subject | UHPFRC | es_ES |
dc.subject | Steel fiber | es_ES |
dc.subject | Creep | es_ES |
dc.subject | Long-term,Bending | es_ES |
dc.subject | Compression | es_ES |
dc.subject.classification | INGENIERIA DE LA CONSTRUCCION | es_ES |
dc.title | Flexural and compressive creep behavior of UHPFRC specimens | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.conbuildmat.2020.118254 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BIA2016-78460-C3-1-R/ES/BASES PARA EL DISEÑO DE ESTRUCTURAS SOSTENIBLES DE HORMIGON DE MUY ALTO RENDIMIENTO A NIVEL PRENORMATIVO/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil | es_ES |
dc.description.bibliographicCitation | Llano-Torre, A.; Martí Vargas, JR.; Serna Ros, P. (2020). Flexural and compressive creep behavior of UHPFRC specimens. Construction and Building Materials. 244:1-13. https://doi.org/10.1016/j.conbuildmat.2020.118254 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.conbuildmat.2020.118254 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 13 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 244 | es_ES |
dc.relation.pasarela | S\427069 | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Portland Cement Association, https://www.cement.org/learn/concrete-technology/concrete-design-production/ultra-high-performance-concrete, Consultation on 01/11/2018. | es_ES |
dc.description.references | De Larrard, F., & Sedran, T. (1994). Optimization of ultra-high-performance concrete by the use of a packing model. Cement and Concrete Research, 24(6), 997-1009. doi:10.1016/0008-8846(94)90022-1 | es_ES |
dc.description.references | Graybeal, B. A. (2014). Ultra-high-performance concrete connections for precast concrete bridge decks. PCI Journal, 59(4), 48-62. doi:10.15554/pcij.09012014.48.62 | es_ES |
dc.description.references | A. Naaman, High performance fiber reinforced cement composites, in: Proceedings of the IABSE symposium on concrete structures for the future, 1987, pp. 371–376. | es_ES |
dc.description.references | M. Reichel, B. Freytag, L. Sparowitz, Road Bridge WILD-UHPFRC for a segmental arch structure. BFUP 2009/UHPFRC 2009 Proceedings. | es_ES |
dc.description.references | Lopez, J. A., Serna, P., Camacho, E., Coll, H., & Navarro-Gregori, J. (2014). First Ultra-High-Performance Fibre-Reinforced Concrete Footbridge in Spain: Design and Construction. Structural Engineering International, 24(1), 101-104. doi:10.2749/101686614x13830788505793 | es_ES |
dc.description.references | Walraven, J. C. (2009). High performance fiber reinforced concrete: progress in knowledge and design codes. Materials and Structures, 42(9). doi:10.1617/s11527-009-9538-3 | es_ES |
dc.description.references | Federal Highway Administration (FHWA), Publication No. FHWA-HRT-13-060 Ultra-High Performance Concrete: A State-of-the-Art Report for the Bridge Community, 2013. | es_ES |
dc.description.references | Kim, G.-Y., Choi, J.-I., Park, S.-E., Kim, H., Lee, Y., & Lee, B. Y. (2018). Response of UHPFRC and HDFRC under static and high-velocity projectile impact loads. Construction and Building Materials, 188, 399-408. doi:10.1016/j.conbuildmat.2018.08.135 | es_ES |
dc.description.references | Krahl, P. A., de Miranda Saleme Gidrão, G., & Carrazedo, R. (2018). Compressive behavior of UHPFRC under quasi-static and seismic strain rates considering the effect of fiber content. Construction and Building Materials, 188, 633-644. doi:10.1016/j.conbuildmat.2018.08.121 | es_ES |
dc.description.references | Kahanji, C., Ali, F., Nadjai, A., & Alam, N. (2018). Effect of curing temperature on the behaviour of UHPFRC at elevated temperatures. Construction and Building Materials, 182, 670-681. doi:10.1016/j.conbuildmat.2018.06.163 | es_ES |
dc.description.references | Foglar, M., Hajek, R., Fladr, J., Pachman, J., & Stoller, J. (2017). Full-scale experimental testing of the blast resistance of HPFRC and UHPFRC bridge decks. Construction and Building Materials, 145, 588-601. doi:10.1016/j.conbuildmat.2017.04.054 | es_ES |
dc.description.references | Buratti, N., Mazzotti, C., & Savoia, M. (2011). Post-cracking behaviour of steel and macro-synthetic fibre-reinforced concretes. Construction and Building Materials, 25(5), 2713-2722. doi:10.1016/j.conbuildmat.2010.12.022 | es_ES |
dc.description.references | López, J. Á., Serna, P., Navarro-Gregori, J., & Camacho, E. (2014). An inverse analysis method based on deflection to curvature transformation to determine the tensile properties of UHPFRC. Materials and Structures, 48(11), 3703-3718. doi:10.1617/s11527-014-0434-0 | es_ES |
dc.description.references | Li, W., Huang, Z., Hu, G., Hui Duan, W., & Shah, S. P. (2017). Early-age shrinkage development of ultra-high-performance concrete under heat curing treatment. Construction and Building Materials, 131, 767-774. doi:10.1016/j.conbuildmat.2016.11.024 | es_ES |
dc.description.references | Xu, Y., Liu, J., Liu, J., Zhang, P., Zhang, Q., & Jiang, L. (2018). Experimental studies and modeling of creep of UHPC. Construction and Building Materials, 175, 643-652. doi:10.1016/j.conbuildmat.2018.04.157 | es_ES |
dc.description.references | Association Française de Genie Civil (AFGC), Ultra-High Performance Fiber Reinforced Concretes. Recommendations, 2013. | es_ES |
dc.description.references | Japanese Society of Civil Engineers (JSCE), Recommendations for Design and Construction of Ultra High Strength Fiber Reinforced Concrete Structures (Draft). Subcommittee on Research of Ultra High Strength Fiber Reinforced Concrete, 2006. Tokyo, Japan. | es_ES |
dc.description.references | Plizzari, G., & Serna, P. (2018). Structural effects of FRC creep. Materials and Structures, 51(6). doi:10.1617/s11527-018-1290-0 | es_ES |
dc.description.references | Garas, V. Y., Kahn, L. F., & Kurtis, K. E. (2009). Short-term tensile creep and shrinkage of ultra-high performance concrete. Cement and Concrete Composites, 31(3), 147-152. doi:10.1016/j.cemconcomp.2009.01.002 | es_ES |
dc.description.references | Kamen, A., Denarié, E., Sadouki, H., & Brühwiler, E. (2008). UHPFRC tensile creep at early age. Materials and Structures, 42(1), 113-122. doi:10.1617/s11527-008-9371-0 | es_ES |
dc.description.references | Switek-Rey, A., Denarié, E., & Brühwiler, E. (2016). Early age creep and relaxation of UHPFRC under low to high tensile stresses. Cement and Concrete Research, 83, 57-69. doi:10.1016/j.cemconres.2016.01.005 | es_ES |
dc.description.references | Garas, V. Y., Kurtis, K. E., & Kahn, L. F. (2012). Creep of UHPC in tension and compression: Effect of thermal treatment. Cement and Concrete Composites, 34(4), 493-502. doi:10.1016/j.cemconcomp.2011.12.002 | es_ES |
dc.description.references | D. Casucci, C. Thiele, J. Schnell, Behavior of cracked cross-section of fibre reinforced UHPFRC under sustained load. In: Serna, P, Cavalaro, S., Llano-Torre, A. (Eds.), Proceedings of the International RILEM Workshop FRC-CREEP 2016 “Creep Behaviour in Cracked Sections of Fibre Reinforced Concrete”, Valencia, 2016, RILEM Bookseries 14, ISBN 978-94-024-1000-6. | es_ES |
dc.description.references | E. Galeote, A. Blanco, A. de la Fuente, S.H.P. Cavalaro, Creep behaviour of cracked high performance fibre reinforced concrete beams under flexural load. In: Serna, P, Cavalaro, S., Llano-Torre, A. (Eds.), Proceedings of the International RILEM Workshop FRC-CREEP 2016 “Creep Behaviour in Cracked Sections of Fibre Reinforced Concrete”, Valencia, 2016, RILEM Bookseries 14, ISBN 978-94-024-1000-6. | es_ES |
dc.description.references | T. Nishiwaki, S. Kwon, H. Otaki, G. Igarashi, F.UA. Shaikh, A.P. Fantilli, Experimental study on time-dependent behavior of cracked UHP-FRCC under sustained loads. In: Serna, P, Cavalaro, S. Llano-Torre, A. (Eds.), Proceedings of the International RILEM Workshop FRC-CREEP 2016 “Creep Behaviour in Cracked Sections of Fibre Reinforced Concrete”, Valencia, 2016, RILEM Bookseries 14, ISBN 978-94-024-1000-6. | es_ES |
dc.description.references | European Committee for Standardization, European Standard EN179-1:201, Cement – Part 1: Composition, specifications and conformity criteria for common cements, Brussels, 2011. | es_ES |
dc.description.references | European Committee for Standardization, European Standard EN 14651:2007: Test method for metallic fibered concrete – Measuring the flexural tensile strength (limit of proportionality (LOP), residual), Brussels, 2007. | es_ES |
dc.description.references | European Committee for Standardization, European Standard EN 12390-3:2009, Testing hardened concrete – Part 3: Compressive strength of test specimens, Brussels, 20097. | es_ES |
dc.description.references | Arango, S. E., Serna, P., Martí-Vargas, J. R., & García-Taengua, E. (2011). A Test Method to Characterize Flexural Creep Behaviour of Pre-cracked FRC Specimens. Experimental Mechanics, 52(8), 1067-1078. doi:10.1007/s11340-011-9556-2 | es_ES |
dc.description.references | García-Taengua, E., Arango, S., Martí-Vargas, J. R., & Serna, P. (2014). Flexural creep of steel fiber reinforced concrete in the cracked state. Construction and Building Materials, 65, 321-329. doi:10.1016/j.conbuildmat.2014.04.139 | es_ES |
dc.description.references | Serna Ros, P., Martí-Vargas, J. R., Bossio, M. E., & Zerbino, R. (2016). Creep and residual properties of cracked macro-synthetic fibre reinforced concretes. Magazine of Concrete Research, 68(4), 197-207. doi:10.1680/macr.15.00111 | es_ES |
dc.description.references | Monetti, D. H., Llano-Torre, A., Torrijos, M. C., Giaccio, G., Zerbino, R., Martí-Vargas, J. R., & Serna, P. (2019). Long-term behavior of cracked fiber reinforced concrete under service conditions. Construction and Building Materials, 196, 649-658. doi:10.1016/j.conbuildmat.2018.10.230 | es_ES |
dc.subject.ods | 13.- Tomar medidas urgentes para combatir el cambio climático y sus efectos | es_ES |