- -

Flexural and compressive creep behavior of UHPFRC specimens

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Flexural and compressive creep behavior of UHPFRC specimens

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Llano-Torre, Aitor es_ES
dc.contributor.author Martí Vargas, José Rocío es_ES
dc.contributor.author Serna Ros, Pedro es_ES
dc.date.accessioned 2021-02-09T04:31:40Z
dc.date.available 2021-02-09T04:31:40Z
dc.date.issued 2020-05-30 es_ES
dc.identifier.issn 0950-0618 es_ES
dc.identifier.uri http://hdl.handle.net/10251/160896
dc.description.abstract [EN] The long term behavior of Ultra High Performance Fiber Reinforced Concrete (UHPFRC) is analyzed in this study. The experimental campaign covered creep in compression and creep in flexure in cracked state. Three types of specimens were cast: cylindrical specimens (empty set100 x 200 mm) for compressive creep and shrinkage, and prismatic specimens type regular "R" (150 x 150 x 600 mm) and type slim "S" (150 x 40 x 600 mm) for flexural creep in cracked state. Specimens R were notched up to 50 mm in depth to weak the central section and then pre-cracked until 0.65 mm of Crack Mouth Opening Displacement (CMOD). Specimens S were pre-cracked unnotched until a loss of 50% of stiffness was observed. Flexural creep tests were performed during 270 days under load, and until 360 days the compressive tests. Measurements from three experimental sources were obtained: CMOD, compressive strains on top of prismatic specimens and longitudinal compressive strains in cylindrical specimens. Creep coefficients and parameters related with deferred deformations velocity were obtained from all three sources. Creep coefficients under flexure at 270 days ranged from 0.62 to 1.20 in the tensile zone, and from 0.72 to 0.90 in the compressive zone. Creep coefficient in compression at one year was 1.07, which is consistent with values found in the literature. Deferred deformations velocities at early ages were greater in specimens R than in specimens S, and a secondary creep stage was achieved in all specimens after 210 days of sustained loading. es_ES
dc.description.sponsorship The authors wish to thank the technicians of ICITECH, where the experimental work was developed. The financial support of the project BIA2016-78460-C3-1-R "Bases para el diseno de estructuras sostenibles de hormigon de muy alto rendimiento a nivel prenormativo/Diseno eficiente de estructuras de HMAR", supported by the Ministry of Economy and Competitiveness (Spain) and the European Regional Development Fund (European Union), is also gratefully acknowledged. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Construction and Building Materials es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Ultra-High Performance Fiber Reinforced es_ES
dc.subject Concrete es_ES
dc.subject UHPFRC es_ES
dc.subject Steel fiber es_ES
dc.subject Creep es_ES
dc.subject Long-term,Bending es_ES
dc.subject Compression es_ES
dc.subject.classification INGENIERIA DE LA CONSTRUCCION es_ES
dc.title Flexural and compressive creep behavior of UHPFRC specimens es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.conbuildmat.2020.118254 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BIA2016-78460-C3-1-R/ES/BASES PARA EL DISEÑO DE ESTRUCTURAS SOSTENIBLES DE HORMIGON DE MUY ALTO RENDIMIENTO A NIVEL PRENORMATIVO/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil es_ES
dc.description.bibliographicCitation Llano-Torre, A.; Martí Vargas, JR.; Serna Ros, P. (2020). Flexural and compressive creep behavior of UHPFRC specimens. Construction and Building Materials. 244:1-13. https://doi.org/10.1016/j.conbuildmat.2020.118254 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.conbuildmat.2020.118254 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 244 es_ES
dc.relation.pasarela S\427069 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Portland Cement Association, https://www.cement.org/learn/concrete-technology/concrete-design-production/ultra-high-performance-concrete, Consultation on 01/11/2018. es_ES
dc.description.references De Larrard, F., & Sedran, T. (1994). Optimization of ultra-high-performance concrete by the use of a packing model. Cement and Concrete Research, 24(6), 997-1009. doi:10.1016/0008-8846(94)90022-1 es_ES
dc.description.references Graybeal, B. A. (2014). Ultra-high-performance concrete connections for precast concrete bridge decks. PCI Journal, 59(4), 48-62. doi:10.15554/pcij.09012014.48.62 es_ES
dc.description.references A. Naaman, High performance fiber reinforced cement composites, in: Proceedings of the IABSE symposium on concrete structures for the future, 1987, pp. 371–376. es_ES
dc.description.references M. Reichel, B. Freytag, L. Sparowitz, Road Bridge WILD-UHPFRC for a segmental arch structure. BFUP 2009/UHPFRC 2009 Proceedings. es_ES
dc.description.references Lopez, J. A., Serna, P., Camacho, E., Coll, H., & Navarro-Gregori, J. (2014). First Ultra-High-Performance Fibre-Reinforced Concrete Footbridge in Spain: Design and Construction. Structural Engineering International, 24(1), 101-104. doi:10.2749/101686614x13830788505793 es_ES
dc.description.references Walraven, J. C. (2009). High performance fiber reinforced concrete: progress in knowledge and design codes. Materials and Structures, 42(9). doi:10.1617/s11527-009-9538-3 es_ES
dc.description.references Federal Highway Administration (FHWA), Publication No. FHWA-HRT-13-060 Ultra-High Performance Concrete: A State-of-the-Art Report for the Bridge Community, 2013. es_ES
dc.description.references Kim, G.-Y., Choi, J.-I., Park, S.-E., Kim, H., Lee, Y., & Lee, B. Y. (2018). Response of UHPFRC and HDFRC under static and high-velocity projectile impact loads. Construction and Building Materials, 188, 399-408. doi:10.1016/j.conbuildmat.2018.08.135 es_ES
dc.description.references Krahl, P. A., de Miranda Saleme Gidrão, G., & Carrazedo, R. (2018). Compressive behavior of UHPFRC under quasi-static and seismic strain rates considering the effect of fiber content. Construction and Building Materials, 188, 633-644. doi:10.1016/j.conbuildmat.2018.08.121 es_ES
dc.description.references Kahanji, C., Ali, F., Nadjai, A., & Alam, N. (2018). Effect of curing temperature on the behaviour of UHPFRC at elevated temperatures. Construction and Building Materials, 182, 670-681. doi:10.1016/j.conbuildmat.2018.06.163 es_ES
dc.description.references Foglar, M., Hajek, R., Fladr, J., Pachman, J., & Stoller, J. (2017). Full-scale experimental testing of the blast resistance of HPFRC and UHPFRC bridge decks. Construction and Building Materials, 145, 588-601. doi:10.1016/j.conbuildmat.2017.04.054 es_ES
dc.description.references Buratti, N., Mazzotti, C., & Savoia, M. (2011). Post-cracking behaviour of steel and macro-synthetic fibre-reinforced concretes. Construction and Building Materials, 25(5), 2713-2722. doi:10.1016/j.conbuildmat.2010.12.022 es_ES
dc.description.references López, J. Á., Serna, P., Navarro-Gregori, J., & Camacho, E. (2014). An inverse analysis method based on deflection to curvature transformation to determine the tensile properties of UHPFRC. Materials and Structures, 48(11), 3703-3718. doi:10.1617/s11527-014-0434-0 es_ES
dc.description.references Li, W., Huang, Z., Hu, G., Hui Duan, W., & Shah, S. P. (2017). Early-age shrinkage development of ultra-high-performance concrete under heat curing treatment. Construction and Building Materials, 131, 767-774. doi:10.1016/j.conbuildmat.2016.11.024 es_ES
dc.description.references Xu, Y., Liu, J., Liu, J., Zhang, P., Zhang, Q., & Jiang, L. (2018). Experimental studies and modeling of creep of UHPC. Construction and Building Materials, 175, 643-652. doi:10.1016/j.conbuildmat.2018.04.157 es_ES
dc.description.references Association Française de Genie Civil (AFGC), Ultra-High Performance Fiber Reinforced Concretes. Recommendations, 2013. es_ES
dc.description.references Japanese Society of Civil Engineers (JSCE), Recommendations for Design and Construction of Ultra High Strength Fiber Reinforced Concrete Structures (Draft). Subcommittee on Research of Ultra High Strength Fiber Reinforced Concrete, 2006. Tokyo, Japan. es_ES
dc.description.references Plizzari, G., & Serna, P. (2018). Structural effects of FRC creep. Materials and Structures, 51(6). doi:10.1617/s11527-018-1290-0 es_ES
dc.description.references Garas, V. Y., Kahn, L. F., & Kurtis, K. E. (2009). Short-term tensile creep and shrinkage of ultra-high performance concrete. Cement and Concrete Composites, 31(3), 147-152. doi:10.1016/j.cemconcomp.2009.01.002 es_ES
dc.description.references Kamen, A., Denarié, E., Sadouki, H., & Brühwiler, E. (2008). UHPFRC tensile creep at early age. Materials and Structures, 42(1), 113-122. doi:10.1617/s11527-008-9371-0 es_ES
dc.description.references Switek-Rey, A., Denarié, E., & Brühwiler, E. (2016). Early age creep and relaxation of UHPFRC under low to high tensile stresses. Cement and Concrete Research, 83, 57-69. doi:10.1016/j.cemconres.2016.01.005 es_ES
dc.description.references Garas, V. Y., Kurtis, K. E., & Kahn, L. F. (2012). Creep of UHPC in tension and compression: Effect of thermal treatment. Cement and Concrete Composites, 34(4), 493-502. doi:10.1016/j.cemconcomp.2011.12.002 es_ES
dc.description.references D. Casucci, C. Thiele, J. Schnell, Behavior of cracked cross-section of fibre reinforced UHPFRC under sustained load. In: Serna, P, Cavalaro, S., Llano-Torre, A. (Eds.), Proceedings of the International RILEM Workshop FRC-CREEP 2016 “Creep Behaviour in Cracked Sections of Fibre Reinforced Concrete”, Valencia, 2016, RILEM Bookseries 14, ISBN 978-94-024-1000-6. es_ES
dc.description.references E. Galeote, A. Blanco, A. de la Fuente, S.H.P. Cavalaro, Creep behaviour of cracked high performance fibre reinforced concrete beams under flexural load. In: Serna, P, Cavalaro, S., Llano-Torre, A. (Eds.), Proceedings of the International RILEM Workshop FRC-CREEP 2016 “Creep Behaviour in Cracked Sections of Fibre Reinforced Concrete”, Valencia, 2016, RILEM Bookseries 14, ISBN 978-94-024-1000-6. es_ES
dc.description.references T. Nishiwaki, S. Kwon, H. Otaki, G. Igarashi, F.UA. Shaikh, A.P. Fantilli, Experimental study on time-dependent behavior of cracked UHP-FRCC under sustained loads. In: Serna, P, Cavalaro, S. Llano-Torre, A. (Eds.), Proceedings of the International RILEM Workshop FRC-CREEP 2016 “Creep Behaviour in Cracked Sections of Fibre Reinforced Concrete”, Valencia, 2016, RILEM Bookseries 14, ISBN 978-94-024-1000-6. es_ES
dc.description.references European Committee for Standardization, European Standard EN179-1:201, Cement – Part 1: Composition, specifications and conformity criteria for common cements, Brussels, 2011. es_ES
dc.description.references European Committee for Standardization, European Standard EN 14651:2007: Test method for metallic fibered concrete – Measuring the flexural tensile strength (limit of proportionality (LOP), residual), Brussels, 2007. es_ES
dc.description.references European Committee for Standardization, European Standard EN 12390-3:2009, Testing hardened concrete – Part 3: Compressive strength of test specimens, Brussels, 20097. es_ES
dc.description.references Arango, S. E., Serna, P., Martí-Vargas, J. R., & García-Taengua, E. (2011). A Test Method to Characterize Flexural Creep Behaviour of Pre-cracked FRC Specimens. Experimental Mechanics, 52(8), 1067-1078. doi:10.1007/s11340-011-9556-2 es_ES
dc.description.references García-Taengua, E., Arango, S., Martí-Vargas, J. R., & Serna, P. (2014). Flexural creep of steel fiber reinforced concrete in the cracked state. Construction and Building Materials, 65, 321-329. doi:10.1016/j.conbuildmat.2014.04.139 es_ES
dc.description.references Serna Ros, P., Martí-Vargas, J. R., Bossio, M. E., & Zerbino, R. (2016). Creep and residual properties of cracked macro-synthetic fibre reinforced concretes. Magazine of Concrete Research, 68(4), 197-207. doi:10.1680/macr.15.00111 es_ES
dc.description.references Monetti, D. H., Llano-Torre, A., Torrijos, M. C., Giaccio, G., Zerbino, R., Martí-Vargas, J. R., & Serna, P. (2019). Long-term behavior of cracked fiber reinforced concrete under service conditions. Construction and Building Materials, 196, 649-658. doi:10.1016/j.conbuildmat.2018.10.230 es_ES
dc.subject.ods 13.- Tomar medidas urgentes para combatir el cambio climático y sus efectos es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem