- -

Environmental and social impact assessment of optimized post-tensioned concrete road bridges

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Environmental and social impact assessment of optimized post-tensioned concrete road bridges

Mostrar el registro completo del ítem

Penades-Pla, V.; Martínez-Muñoz, D.; García-Segura, T.; Navarro, IJ.; Yepes, V. (2020). Environmental and social impact assessment of optimized post-tensioned concrete road bridges. Sustainability. 12(10):4265-01-4265-18. https://doi.org/10.3390/su12104265

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/160897

Ficheros en el ítem

Metadatos del ítem

Título: Environmental and social impact assessment of optimized post-tensioned concrete road bridges
Autor: Penades-Pla, Vicent Martínez-Muñoz, D. García-Segura, Tatiana Navarro, Ignacio J. Yepes, V.
Entidad UPV: Universitat Politècnica de València. Instituto de Ciencia y Tecnología del Hormigón - Institut de Ciència i Tecnologia del Formigó
Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil
Fecha difusión:
Resumen:
[EN] Most of the definitions of sustainability include three basic pillars: economic, environmental, and social. The economic pillar has always been evaluated but not necessarily in the sense of economic sustainability. ...[+]
Palabras clave: Sustainability , LCA , S-LCA , Social assessment , Ecoinvent , SOCA
Derechos de uso: Reconocimiento (by)
Fuente:
Sustainability. (eissn: 2071-1050 )
DOI: 10.3390/su12104265
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/su12104265
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIA2017-85098-R/ES/DISEÑO Y MANTENIMIENTO OPTIMO ROBUSTO Y BASADO EN FIABILIDAD DE PUENTES E INFRAESTRUCTURAS VIARIAS DE ALTA EFICIENCIA SOCIAL Y MEDIOAMBIENTAL BAJO PRESUPUESTOS RESTRICTIVOS/
Agradecimientos:
This research was funded by the Ministerio de Economia, Ciencia y Competitividad and FEDER funding grant number [BIA2017-85098-R]
Tipo: Artículo

References

Murphy, K. (2012). The social pillar of sustainable development: a literature review and framework for policy analysis. Sustainability: Science, Practice and Policy, 8(1), 15-29. doi:10.1080/15487733.2012.11908081

Vallance, S., Perkins, H. C., & Dixon, J. E. (2011). What is social sustainability? A clarification of concepts. Geoforum, 42(3), 342-348. doi:10.1016/j.geoforum.2011.01.002

Sierra, L. A., Yepes, V., & Pellicer, E. (2017). Assessing the social sustainability contribution of an infrastructure project under conditions of uncertainty. Environmental Impact Assessment Review, 67, 61-72. doi:10.1016/j.eiar.2017.08.003 [+]
Murphy, K. (2012). The social pillar of sustainable development: a literature review and framework for policy analysis. Sustainability: Science, Practice and Policy, 8(1), 15-29. doi:10.1080/15487733.2012.11908081

Vallance, S., Perkins, H. C., & Dixon, J. E. (2011). What is social sustainability? A clarification of concepts. Geoforum, 42(3), 342-348. doi:10.1016/j.geoforum.2011.01.002

Sierra, L. A., Yepes, V., & Pellicer, E. (2017). Assessing the social sustainability contribution of an infrastructure project under conditions of uncertainty. Environmental Impact Assessment Review, 67, 61-72. doi:10.1016/j.eiar.2017.08.003

Navarro, I. J., Yepes, V., & Martí, J. V. (2018). Social life cycle assessment of concrete bridge decks exposed to aggressive environments. Environmental Impact Assessment Review, 72, 50-63. doi:10.1016/j.eiar.2018.05.003

Navarro, I. J., Martí, J. V., & Yepes, V. (2019). Reliability-based maintenance optimization of corrosion preventive designs under a life cycle perspective. Environmental Impact Assessment Review, 74, 23-34. doi:10.1016/j.eiar.2018.10.001

Navarro, I. J., Yepes, V., & Martí, J. V. (2019). Sustainability assessment of concrete bridge deck designs in coastal environments using neutrosophic criteria weights. Structure and Infrastructure Engineering, 16(7), 949-967. doi:10.1080/15732479.2019.1676791

Valdes-Vasquez, R., & Klotz, L. E. (2013). Social Sustainability Considerations during Planning and Design: Framework of Processes for Construction Projects. Journal of Construction Engineering and Management, 139(1), 80-89. doi:10.1061/(asce)co.1943-7862.0000566

Almahmoud, E., & Doloi, H. K. (2015). Assessment of social sustainability in construction projects using social network analysis. Facilities, 33(3/4), 152-176. doi:10.1108/f-05-2013-0042

Navarro, I., Yepes, V., & Martí, J. (2018). Life Cycle Cost Assessment of Preventive Strategies Applied to Prestressed Concrete Bridges Exposed to Chlorides. Sustainability, 10(3), 845. doi:10.3390/su10030845

Salas, J., & Yepes, V. (2019). VisualUVAM: A Decision Support System Addressing the Curse of Dimensionality for the Multi-Scale Assessment of Urban Vulnerability in Spain. Sustainability, 11(8), 2191. doi:10.3390/su11082191

Kripka, M., Yepes, V., & Milani, C. (2019). Selection of Sustainable Short-Span Bridge Design in Brazil. Sustainability, 11(5), 1307. doi:10.3390/su11051307

Hansen, M. (2020). Determination and assessment of fatigue stresses on concrete bridges. Structural Concrete, 21(4), 1286-1297. doi:10.1002/suco.201900432

Sargsyan, A., Sargsyan, G., & Resnik, B. (2019). Influence of Cracks on Frequency of the Self-Vibration of Reinforced Concrete T Beam of Road Bridges. Key Engineering Materials, 828, 9-13. doi:10.4028/www.scientific.net/kem.828.9

Penadés-Plà, V., García-Segura, T., Martí, J., & Yepes, V. (2016). A Review of Multi-Criteria Decision-Making Methods Applied to the Sustainable Bridge Design. Sustainability, 8(12), 1295. doi:10.3390/su8121295

Horvath, A., & Hendrickson, C. (1998). Steel versus Steel-Reinforced Concrete Bridges: Environmental Assessment. Journal of Infrastructure Systems, 4(3), 111-117. doi:10.1061/(asce)1076-0342(1998)4:3(111)

Widman, J. (1998). Environmental impact assessment of steel bridges. Journal of Constructional Steel Research, 46(1-3), 291-293. doi:10.1016/s0143-974x(98)80031-x

Gervásio, H., & da Silva, L. S. (2008). Comparative life-cycle analysis of steel-concrete composite bridges. Structure and Infrastructure Engineering, 4(4), 251-269. doi:10.1080/15732470600627325

Itoh, Y., & Kitagawa, T. (2003). Using CO2 emission quantities in bridge lifecycle analysis. Engineering Structures, 25(5), 565-577. doi:10.1016/s0141-0296(02)00167-0

Bouhaya, L., Le Roy, R., & Feraille-Fresnet, A. (2009). Simplified Environmental Study on Innovative Bridge Structure. Environmental Science & Technology, 43(6), 2066-2071. doi:10.1021/es801351g

Du, G., Safi, M., Pettersson, L., & Karoumi, R. (2014). Life cycle assessment as a decision support tool for bridge procurement: environmental impact comparison among five bridge designs. The International Journal of Life Cycle Assessment, 19(12), 1948-1964. doi:10.1007/s11367-014-0797-z

Hammervold, J., Reenaas, M., & Brattebø, H. (2013). Environmental Life Cycle Assessment of Bridges. Journal of Bridge Engineering, 18(2), 153-161. doi:10.1061/(asce)be.1943-5592.0000328

Gervásio, H., & Simões da Silva, L. (2012). A probabilistic decision-making approach for the sustainable assessment of infrastructures. Expert Systems with Applications, 39(8), 7121-7131. doi:10.1016/j.eswa.2012.01.032

Chen, Z., Abdullah, A. B., Anumba, C. J., & Li, H. (2014). ANP Experiment for Demolition Plan Evaluation. Journal of Construction Engineering and Management, 140(2), 06013005. doi:10.1061/(asce)co.1943-7862.0000791

Bare, J. C. (2002). Traci. Journal of Industrial Ecology, 6(3-4), 49-78. doi:10.1162/108819802766269539

Goedkoop, M., Hofstetter, P., Müller-Wenk, R., & Spriemsma, R. (1998). The ECO-indicator 98 explained. The International Journal of Life Cycle Assessment, 3(6), 352-360. doi:10.1007/bf02979347

Itsubo, N., Sakagami, M., Washida, T., Kokubu, K., & Inaba, A. (2004). Weighting across safeguard subjects for LCIA through the application of conjoint analysis. The International Journal of Life Cycle Assessment, 9(3), 196-205. doi:10.1007/bf02994194

New Earth SHDB v1.0 (Social Hotspot Database)https://www.socialhotspot.org/

GreenDelta PSILCA Databasehttps://psilca.net/

New Earth SHDB Databasehttps://www.socialhotspot.org/for-more-information.html

Du, G., & Karoumi, R. (2013). Life cycle assessment of a railway bridge: comparison of two superstructure designs. Structure and Infrastructure Engineering, 9(11), 1149-1160. doi:10.1080/15732479.2012.670250

Penadés-Plà, V., Martí, J. V., García-Segura, T., & Yepes, V. (2017). Life-Cycle Assessment: A Comparison between Two Optimal Post-Tensioned Concrete Box-Girder Road Bridges. Sustainability, 9(10), 1864. doi:10.3390/su9101864

Penadés-Plà, V., García-Segura, T., Martí, J., & Yepes, V. (2018). An Optimization-LCA of a Prestressed Concrete Precast Bridge. Sustainability, 10(3), 685. doi:10.3390/su10030685

Pons, J. J., Penadés-Plà, V., Yepes, V., & Martí, J. V. (2018). Life cycle assessment of earth-retaining walls: An environmental comparison. Journal of Cleaner Production, 192, 411-420. doi:10.1016/j.jclepro.2018.04.268

Steele, K., Cole, G., Parke, G., Clarke, B., & Harding, J. (2003). Highway bridges and environment—sustainable perspectives. Proceedings of the Institution of Civil Engineers - Civil Engineering, 156(4), 176-182. doi:10.1680/cien.2003.156.4.176

BEDEC PR/PCT ITEC Material Databasehttps://metabase.itec.cat/vide/ca/bedec

García-Segura, T., Yepes, V., Frangopol, D. M., & Yang, D. Y. (2017). Lifetime reliability-based optimization of post-tensioned box-girder bridges. Engineering Structures, 145, 381-391. doi:10.1016/j.engstruct.2017.05.013

PRASCEVIC, N., & PRASCEVIC, Z. (2017). APPLICATION OF FUZZY AHP FOR RANKING AND SELECTION OF ALTERNATIVES IN CONSTRUCTION PROJECT MANAGEMENT. Journal of Civil Engineering and Management, 23(8), 1123-1135. doi:10.3846/13923730.2017.1388278

García-Segura, T., Penadés-Plà, V., & Yepes, V. (2018). Sustainable bridge design by metamodel-assisted multi-objective optimization and decision-making under uncertainty. Journal of Cleaner Production, 202, 904-915. doi:10.1016/j.jclepro.2018.08.177

Pamučar, D., Badi, I., Sanja, K., & Obradović, R. (2018). A Novel Approach for the Selection of Power-Generation Technology Using a Linguistic Neutrosophic CODAS Method: A Case Study in Libya. Energies, 11(9), 2489. doi:10.3390/en11092489

Tait, M. W., & Cheung, W. M. (2016). A comparative cradle-to-gate life cycle assessment of three concrete mix designs. The International Journal of Life Cycle Assessment, 21(6), 847-860. doi:10.1007/s11367-016-1045-5

Sierra, L. A., Pellicer, E., & Yepes, V. (2017). Method for estimating the social sustainability of infrastructure projects. Environmental Impact Assessment Review, 65, 41-53. doi:10.1016/j.eiar.2017.02.004

Navarro, I. J., Yepes, V., Martí, J. V., & González-Vidosa, F. (2018). Life cycle impact assessment of corrosion preventive designs applied to prestressed concrete bridge decks. Journal of Cleaner Production, 196, 698-713. doi:10.1016/j.jclepro.2018.06.110

Hosseinijou, S. A., Mansour, S., & Shirazi, M. A. (2013). Social life cycle assessment for material selection: a case study of building materials. The International Journal of Life Cycle Assessment, 19(3), 620-645. doi:10.1007/s11367-013-0658-1

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem