- -

Environmental and social impact assessment of optimized post-tensioned concrete road bridges

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Environmental and social impact assessment of optimized post-tensioned concrete road bridges

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Penades-Pla, Vicent es_ES
dc.contributor.author Martínez-Muñoz, D. es_ES
dc.contributor.author García-Segura, Tatiana es_ES
dc.contributor.author Navarro, Ignacio J. es_ES
dc.contributor.author Yepes, V. es_ES
dc.date.accessioned 2021-02-09T04:31:43Z
dc.date.available 2021-02-09T04:31:43Z
dc.date.issued 2020-05 es_ES
dc.identifier.uri http://hdl.handle.net/10251/160897
dc.description.abstract [EN] Most of the definitions of sustainability include three basic pillars: economic, environmental, and social. The economic pillar has always been evaluated but not necessarily in the sense of economic sustainability. On the other hand, the environmental pillar is increasingly being considered, while the social pillar is weakly developed. Focusing on the environmental and social pillars, the use of methodologies to allow a wide assessment of these pillars and the integration of the assessment in a few understandable indicators is crucial. This article is structured into two parts. In the first part, a review of life cycle impact assessment methods, which allow a comprehensive assessment of the environmental and social pillars, is carried out. In the second part, a complete environmental and social sustainability assessment is made using the ecoinvent database and ReCiPe method, for the environmental pillar, and SOCA database and simple Social Impact Weighting method, for the social pillar. This methodology was used to compare three optimized bridges: two box-section post-tensioned concrete road bridges with a variety of initial and maintenance characteristics, and a pre-stressed concrete precast bridge. The results show that there is a high interrelation between the environmental and social impact for each life cycle stage. es_ES
dc.description.sponsorship This research was funded by the Ministerio de Economia, Ciencia y Competitividad and FEDER funding grant number [BIA2017-85098-R] es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Sustainability es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Sustainability es_ES
dc.subject LCA es_ES
dc.subject S-LCA es_ES
dc.subject Social assessment es_ES
dc.subject Ecoinvent es_ES
dc.subject SOCA es_ES
dc.subject.classification INGENIERIA DE LA CONSTRUCCION es_ES
dc.subject.classification PROYECTOS DE INGENIERIA es_ES
dc.title Environmental and social impact assessment of optimized post-tensioned concrete road bridges es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/su12104265 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIA2017-85098-R/ES/DISEÑO Y MANTENIMIENTO OPTIMO ROBUSTO Y BASADO EN FIABILIDAD DE PUENTES E INFRAESTRUCTURAS VIARIAS DE ALTA EFICIENCIA SOCIAL Y MEDIOAMBIENTAL BAJO PRESUPUESTOS RESTRICTIVOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Ciencia y Tecnología del Hormigón - Institut de Ciència i Tecnologia del Formigó es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil es_ES
dc.description.bibliographicCitation Penades-Pla, V.; Martínez-Muñoz, D.; García-Segura, T.; Navarro, IJ.; Yepes, V. (2020). Environmental and social impact assessment of optimized post-tensioned concrete road bridges. Sustainability. 12(10):4265-01-4265-18. https://doi.org/10.3390/su12104265 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/su12104265 es_ES
dc.description.upvformatpinicio 4265-01 es_ES
dc.description.upvformatpfin 4265-18 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 10 es_ES
dc.identifier.eissn 2071-1050 es_ES
dc.relation.pasarela S\413521 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Murphy, K. (2012). The social pillar of sustainable development: a literature review and framework for policy analysis. Sustainability: Science, Practice and Policy, 8(1), 15-29. doi:10.1080/15487733.2012.11908081 es_ES
dc.description.references Vallance, S., Perkins, H. C., & Dixon, J. E. (2011). What is social sustainability? A clarification of concepts. Geoforum, 42(3), 342-348. doi:10.1016/j.geoforum.2011.01.002 es_ES
dc.description.references Sierra, L. A., Yepes, V., & Pellicer, E. (2017). Assessing the social sustainability contribution of an infrastructure project under conditions of uncertainty. Environmental Impact Assessment Review, 67, 61-72. doi:10.1016/j.eiar.2017.08.003 es_ES
dc.description.references Navarro, I. J., Yepes, V., & Martí, J. V. (2018). Social life cycle assessment of concrete bridge decks exposed to aggressive environments. Environmental Impact Assessment Review, 72, 50-63. doi:10.1016/j.eiar.2018.05.003 es_ES
dc.description.references Navarro, I. J., Martí, J. V., & Yepes, V. (2019). Reliability-based maintenance optimization of corrosion preventive designs under a life cycle perspective. Environmental Impact Assessment Review, 74, 23-34. doi:10.1016/j.eiar.2018.10.001 es_ES
dc.description.references Navarro, I. J., Yepes, V., & Martí, J. V. (2019). Sustainability assessment of concrete bridge deck designs in coastal environments using neutrosophic criteria weights. Structure and Infrastructure Engineering, 16(7), 949-967. doi:10.1080/15732479.2019.1676791 es_ES
dc.description.references Valdes-Vasquez, R., & Klotz, L. E. (2013). Social Sustainability Considerations during Planning and Design: Framework of Processes for Construction Projects. Journal of Construction Engineering and Management, 139(1), 80-89. doi:10.1061/(asce)co.1943-7862.0000566 es_ES
dc.description.references Almahmoud, E., & Doloi, H. K. (2015). Assessment of social sustainability in construction projects using social network analysis. Facilities, 33(3/4), 152-176. doi:10.1108/f-05-2013-0042 es_ES
dc.description.references Navarro, I., Yepes, V., & Martí, J. (2018). Life Cycle Cost Assessment of Preventive Strategies Applied to Prestressed Concrete Bridges Exposed to Chlorides. Sustainability, 10(3), 845. doi:10.3390/su10030845 es_ES
dc.description.references Salas, J., & Yepes, V. (2019). VisualUVAM: A Decision Support System Addressing the Curse of Dimensionality for the Multi-Scale Assessment of Urban Vulnerability in Spain. Sustainability, 11(8), 2191. doi:10.3390/su11082191 es_ES
dc.description.references Kripka, M., Yepes, V., & Milani, C. (2019). Selection of Sustainable Short-Span Bridge Design in Brazil. Sustainability, 11(5), 1307. doi:10.3390/su11051307 es_ES
dc.description.references Hansen, M. (2020). Determination and assessment of fatigue stresses on concrete bridges. Structural Concrete, 21(4), 1286-1297. doi:10.1002/suco.201900432 es_ES
dc.description.references Sargsyan, A., Sargsyan, G., & Resnik, B. (2019). Influence of Cracks on Frequency of the Self-Vibration of Reinforced Concrete T Beam of Road Bridges. Key Engineering Materials, 828, 9-13. doi:10.4028/www.scientific.net/kem.828.9 es_ES
dc.description.references Penadés-Plà, V., García-Segura, T., Martí, J., & Yepes, V. (2016). A Review of Multi-Criteria Decision-Making Methods Applied to the Sustainable Bridge Design. Sustainability, 8(12), 1295. doi:10.3390/su8121295 es_ES
dc.description.references Horvath, A., & Hendrickson, C. (1998). Steel versus Steel-Reinforced Concrete Bridges: Environmental Assessment. Journal of Infrastructure Systems, 4(3), 111-117. doi:10.1061/(asce)1076-0342(1998)4:3(111) es_ES
dc.description.references Widman, J. (1998). Environmental impact assessment of steel bridges. Journal of Constructional Steel Research, 46(1-3), 291-293. doi:10.1016/s0143-974x(98)80031-x es_ES
dc.description.references Gervásio, H., & da Silva, L. S. (2008). Comparative life-cycle analysis of steel-concrete composite bridges. Structure and Infrastructure Engineering, 4(4), 251-269. doi:10.1080/15732470600627325 es_ES
dc.description.references Itoh, Y., & Kitagawa, T. (2003). Using CO2 emission quantities in bridge lifecycle analysis. Engineering Structures, 25(5), 565-577. doi:10.1016/s0141-0296(02)00167-0 es_ES
dc.description.references Bouhaya, L., Le Roy, R., & Feraille-Fresnet, A. (2009). Simplified Environmental Study on Innovative Bridge Structure. Environmental Science & Technology, 43(6), 2066-2071. doi:10.1021/es801351g es_ES
dc.description.references Du, G., Safi, M., Pettersson, L., & Karoumi, R. (2014). Life cycle assessment as a decision support tool for bridge procurement: environmental impact comparison among five bridge designs. The International Journal of Life Cycle Assessment, 19(12), 1948-1964. doi:10.1007/s11367-014-0797-z es_ES
dc.description.references Hammervold, J., Reenaas, M., & Brattebø, H. (2013). Environmental Life Cycle Assessment of Bridges. Journal of Bridge Engineering, 18(2), 153-161. doi:10.1061/(asce)be.1943-5592.0000328 es_ES
dc.description.references Gervásio, H., & Simões da Silva, L. (2012). A probabilistic decision-making approach for the sustainable assessment of infrastructures. Expert Systems with Applications, 39(8), 7121-7131. doi:10.1016/j.eswa.2012.01.032 es_ES
dc.description.references Chen, Z., Abdullah, A. B., Anumba, C. J., & Li, H. (2014). ANP Experiment for Demolition Plan Evaluation. Journal of Construction Engineering and Management, 140(2), 06013005. doi:10.1061/(asce)co.1943-7862.0000791 es_ES
dc.description.references Bare, J. C. (2002). Traci. Journal of Industrial Ecology, 6(3-4), 49-78. doi:10.1162/108819802766269539 es_ES
dc.description.references Goedkoop, M., Hofstetter, P., Müller-Wenk, R., & Spriemsma, R. (1998). The ECO-indicator 98 explained. The International Journal of Life Cycle Assessment, 3(6), 352-360. doi:10.1007/bf02979347 es_ES
dc.description.references Itsubo, N., Sakagami, M., Washida, T., Kokubu, K., & Inaba, A. (2004). Weighting across safeguard subjects for LCIA through the application of conjoint analysis. The International Journal of Life Cycle Assessment, 9(3), 196-205. doi:10.1007/bf02994194 es_ES
dc.description.references New Earth SHDB v1.0 (Social Hotspot Database)https://www.socialhotspot.org/ es_ES
dc.description.references GreenDelta PSILCA Databasehttps://psilca.net/ es_ES
dc.description.references New Earth SHDB Databasehttps://www.socialhotspot.org/for-more-information.html es_ES
dc.description.references Du, G., & Karoumi, R. (2013). Life cycle assessment of a railway bridge: comparison of two superstructure designs. Structure and Infrastructure Engineering, 9(11), 1149-1160. doi:10.1080/15732479.2012.670250 es_ES
dc.description.references Penadés-Plà, V., Martí, J. V., García-Segura, T., & Yepes, V. (2017). Life-Cycle Assessment: A Comparison between Two Optimal Post-Tensioned Concrete Box-Girder Road Bridges. Sustainability, 9(10), 1864. doi:10.3390/su9101864 es_ES
dc.description.references Penadés-Plà, V., García-Segura, T., Martí, J., & Yepes, V. (2018). An Optimization-LCA of a Prestressed Concrete Precast Bridge. Sustainability, 10(3), 685. doi:10.3390/su10030685 es_ES
dc.description.references Pons, J. J., Penadés-Plà, V., Yepes, V., & Martí, J. V. (2018). Life cycle assessment of earth-retaining walls: An environmental comparison. Journal of Cleaner Production, 192, 411-420. doi:10.1016/j.jclepro.2018.04.268 es_ES
dc.description.references Steele, K., Cole, G., Parke, G., Clarke, B., & Harding, J. (2003). Highway bridges and environment—sustainable perspectives. Proceedings of the Institution of Civil Engineers - Civil Engineering, 156(4), 176-182. doi:10.1680/cien.2003.156.4.176 es_ES
dc.description.references BEDEC PR/PCT ITEC Material Databasehttps://metabase.itec.cat/vide/ca/bedec es_ES
dc.description.references García-Segura, T., Yepes, V., Frangopol, D. M., & Yang, D. Y. (2017). Lifetime reliability-based optimization of post-tensioned box-girder bridges. Engineering Structures, 145, 381-391. doi:10.1016/j.engstruct.2017.05.013 es_ES
dc.description.references PRASCEVIC, N., & PRASCEVIC, Z. (2017). APPLICATION OF FUZZY AHP FOR RANKING AND SELECTION OF ALTERNATIVES IN CONSTRUCTION PROJECT MANAGEMENT. Journal of Civil Engineering and Management, 23(8), 1123-1135. doi:10.3846/13923730.2017.1388278 es_ES
dc.description.references García-Segura, T., Penadés-Plà, V., & Yepes, V. (2018). Sustainable bridge design by metamodel-assisted multi-objective optimization and decision-making under uncertainty. Journal of Cleaner Production, 202, 904-915. doi:10.1016/j.jclepro.2018.08.177 es_ES
dc.description.references Pamučar, D., Badi, I., Sanja, K., & Obradović, R. (2018). A Novel Approach for the Selection of Power-Generation Technology Using a Linguistic Neutrosophic CODAS Method: A Case Study in Libya. Energies, 11(9), 2489. doi:10.3390/en11092489 es_ES
dc.description.references Tait, M. W., & Cheung, W. M. (2016). A comparative cradle-to-gate life cycle assessment of three concrete mix designs. The International Journal of Life Cycle Assessment, 21(6), 847-860. doi:10.1007/s11367-016-1045-5 es_ES
dc.description.references Sierra, L. A., Pellicer, E., & Yepes, V. (2017). Method for estimating the social sustainability of infrastructure projects. Environmental Impact Assessment Review, 65, 41-53. doi:10.1016/j.eiar.2017.02.004 es_ES
dc.description.references Navarro, I. J., Yepes, V., Martí, J. V., & González-Vidosa, F. (2018). Life cycle impact assessment of corrosion preventive designs applied to prestressed concrete bridge decks. Journal of Cleaner Production, 196, 698-713. doi:10.1016/j.jclepro.2018.06.110 es_ES
dc.description.references Hosseinijou, S. A., Mansour, S., & Shirazi, M. A. (2013). Social life cycle assessment for material selection: a case study of building materials. The International Journal of Life Cycle Assessment, 19(3), 620-645. doi:10.1007/s11367-013-0658-1 es_ES
dc.subject.ods 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem