Mostrar el registro sencillo del ítem
dc.contributor.author | Penades-Pla, Vicent | es_ES |
dc.contributor.author | Martínez-Muñoz, D. | es_ES |
dc.contributor.author | García-Segura, Tatiana | es_ES |
dc.contributor.author | Navarro, Ignacio J. | es_ES |
dc.contributor.author | Yepes, V. | es_ES |
dc.date.accessioned | 2021-02-09T04:31:43Z | |
dc.date.available | 2021-02-09T04:31:43Z | |
dc.date.issued | 2020-05 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/160897 | |
dc.description.abstract | [EN] Most of the definitions of sustainability include three basic pillars: economic, environmental, and social. The economic pillar has always been evaluated but not necessarily in the sense of economic sustainability. On the other hand, the environmental pillar is increasingly being considered, while the social pillar is weakly developed. Focusing on the environmental and social pillars, the use of methodologies to allow a wide assessment of these pillars and the integration of the assessment in a few understandable indicators is crucial. This article is structured into two parts. In the first part, a review of life cycle impact assessment methods, which allow a comprehensive assessment of the environmental and social pillars, is carried out. In the second part, a complete environmental and social sustainability assessment is made using the ecoinvent database and ReCiPe method, for the environmental pillar, and SOCA database and simple Social Impact Weighting method, for the social pillar. This methodology was used to compare three optimized bridges: two box-section post-tensioned concrete road bridges with a variety of initial and maintenance characteristics, and a pre-stressed concrete precast bridge. The results show that there is a high interrelation between the environmental and social impact for each life cycle stage. | es_ES |
dc.description.sponsorship | This research was funded by the Ministerio de Economia, Ciencia y Competitividad and FEDER funding grant number [BIA2017-85098-R] | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Sustainability | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Sustainability | es_ES |
dc.subject | LCA | es_ES |
dc.subject | S-LCA | es_ES |
dc.subject | Social assessment | es_ES |
dc.subject | Ecoinvent | es_ES |
dc.subject | SOCA | es_ES |
dc.subject.classification | INGENIERIA DE LA CONSTRUCCION | es_ES |
dc.subject.classification | PROYECTOS DE INGENIERIA | es_ES |
dc.title | Environmental and social impact assessment of optimized post-tensioned concrete road bridges | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/su12104265 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIA2017-85098-R/ES/DISEÑO Y MANTENIMIENTO OPTIMO ROBUSTO Y BASADO EN FIABILIDAD DE PUENTES E INFRAESTRUCTURAS VIARIAS DE ALTA EFICIENCIA SOCIAL Y MEDIOAMBIENTAL BAJO PRESUPUESTOS RESTRICTIVOS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Ciencia y Tecnología del Hormigón - Institut de Ciència i Tecnologia del Formigó | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil | es_ES |
dc.description.bibliographicCitation | Penades-Pla, V.; Martínez-Muñoz, D.; García-Segura, T.; Navarro, IJ.; Yepes, V. (2020). Environmental and social impact assessment of optimized post-tensioned concrete road bridges. Sustainability. 12(10):4265-01-4265-18. https://doi.org/10.3390/su12104265 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/su12104265 | es_ES |
dc.description.upvformatpinicio | 4265-01 | es_ES |
dc.description.upvformatpfin | 4265-18 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 12 | es_ES |
dc.description.issue | 10 | es_ES |
dc.identifier.eissn | 2071-1050 | es_ES |
dc.relation.pasarela | S\413521 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Murphy, K. (2012). The social pillar of sustainable development: a literature review and framework for policy analysis. Sustainability: Science, Practice and Policy, 8(1), 15-29. doi:10.1080/15487733.2012.11908081 | es_ES |
dc.description.references | Vallance, S., Perkins, H. C., & Dixon, J. E. (2011). What is social sustainability? A clarification of concepts. Geoforum, 42(3), 342-348. doi:10.1016/j.geoforum.2011.01.002 | es_ES |
dc.description.references | Sierra, L. A., Yepes, V., & Pellicer, E. (2017). Assessing the social sustainability contribution of an infrastructure project under conditions of uncertainty. Environmental Impact Assessment Review, 67, 61-72. doi:10.1016/j.eiar.2017.08.003 | es_ES |
dc.description.references | Navarro, I. J., Yepes, V., & Martí, J. V. (2018). Social life cycle assessment of concrete bridge decks exposed to aggressive environments. Environmental Impact Assessment Review, 72, 50-63. doi:10.1016/j.eiar.2018.05.003 | es_ES |
dc.description.references | Navarro, I. J., Martí, J. V., & Yepes, V. (2019). Reliability-based maintenance optimization of corrosion preventive designs under a life cycle perspective. Environmental Impact Assessment Review, 74, 23-34. doi:10.1016/j.eiar.2018.10.001 | es_ES |
dc.description.references | Navarro, I. J., Yepes, V., & Martí, J. V. (2019). Sustainability assessment of concrete bridge deck designs in coastal environments using neutrosophic criteria weights. Structure and Infrastructure Engineering, 16(7), 949-967. doi:10.1080/15732479.2019.1676791 | es_ES |
dc.description.references | Valdes-Vasquez, R., & Klotz, L. E. (2013). Social Sustainability Considerations during Planning and Design: Framework of Processes for Construction Projects. Journal of Construction Engineering and Management, 139(1), 80-89. doi:10.1061/(asce)co.1943-7862.0000566 | es_ES |
dc.description.references | Almahmoud, E., & Doloi, H. K. (2015). Assessment of social sustainability in construction projects using social network analysis. Facilities, 33(3/4), 152-176. doi:10.1108/f-05-2013-0042 | es_ES |
dc.description.references | Navarro, I., Yepes, V., & Martí, J. (2018). Life Cycle Cost Assessment of Preventive Strategies Applied to Prestressed Concrete Bridges Exposed to Chlorides. Sustainability, 10(3), 845. doi:10.3390/su10030845 | es_ES |
dc.description.references | Salas, J., & Yepes, V. (2019). VisualUVAM: A Decision Support System Addressing the Curse of Dimensionality for the Multi-Scale Assessment of Urban Vulnerability in Spain. Sustainability, 11(8), 2191. doi:10.3390/su11082191 | es_ES |
dc.description.references | Kripka, M., Yepes, V., & Milani, C. (2019). Selection of Sustainable Short-Span Bridge Design in Brazil. Sustainability, 11(5), 1307. doi:10.3390/su11051307 | es_ES |
dc.description.references | Hansen, M. (2020). Determination and assessment of fatigue stresses on concrete bridges. Structural Concrete, 21(4), 1286-1297. doi:10.1002/suco.201900432 | es_ES |
dc.description.references | Sargsyan, A., Sargsyan, G., & Resnik, B. (2019). Influence of Cracks on Frequency of the Self-Vibration of Reinforced Concrete T Beam of Road Bridges. Key Engineering Materials, 828, 9-13. doi:10.4028/www.scientific.net/kem.828.9 | es_ES |
dc.description.references | Penadés-Plà, V., García-Segura, T., Martí, J., & Yepes, V. (2016). A Review of Multi-Criteria Decision-Making Methods Applied to the Sustainable Bridge Design. Sustainability, 8(12), 1295. doi:10.3390/su8121295 | es_ES |
dc.description.references | Horvath, A., & Hendrickson, C. (1998). Steel versus Steel-Reinforced Concrete Bridges: Environmental Assessment. Journal of Infrastructure Systems, 4(3), 111-117. doi:10.1061/(asce)1076-0342(1998)4:3(111) | es_ES |
dc.description.references | Widman, J. (1998). Environmental impact assessment of steel bridges. Journal of Constructional Steel Research, 46(1-3), 291-293. doi:10.1016/s0143-974x(98)80031-x | es_ES |
dc.description.references | Gervásio, H., & da Silva, L. S. (2008). Comparative life-cycle analysis of steel-concrete composite bridges. Structure and Infrastructure Engineering, 4(4), 251-269. doi:10.1080/15732470600627325 | es_ES |
dc.description.references | Itoh, Y., & Kitagawa, T. (2003). Using CO2 emission quantities in bridge lifecycle analysis. Engineering Structures, 25(5), 565-577. doi:10.1016/s0141-0296(02)00167-0 | es_ES |
dc.description.references | Bouhaya, L., Le Roy, R., & Feraille-Fresnet, A. (2009). Simplified Environmental Study on Innovative Bridge Structure. Environmental Science & Technology, 43(6), 2066-2071. doi:10.1021/es801351g | es_ES |
dc.description.references | Du, G., Safi, M., Pettersson, L., & Karoumi, R. (2014). Life cycle assessment as a decision support tool for bridge procurement: environmental impact comparison among five bridge designs. The International Journal of Life Cycle Assessment, 19(12), 1948-1964. doi:10.1007/s11367-014-0797-z | es_ES |
dc.description.references | Hammervold, J., Reenaas, M., & Brattebø, H. (2013). Environmental Life Cycle Assessment of Bridges. Journal of Bridge Engineering, 18(2), 153-161. doi:10.1061/(asce)be.1943-5592.0000328 | es_ES |
dc.description.references | Gervásio, H., & Simões da Silva, L. (2012). A probabilistic decision-making approach for the sustainable assessment of infrastructures. Expert Systems with Applications, 39(8), 7121-7131. doi:10.1016/j.eswa.2012.01.032 | es_ES |
dc.description.references | Chen, Z., Abdullah, A. B., Anumba, C. J., & Li, H. (2014). ANP Experiment for Demolition Plan Evaluation. Journal of Construction Engineering and Management, 140(2), 06013005. doi:10.1061/(asce)co.1943-7862.0000791 | es_ES |
dc.description.references | Bare, J. C. (2002). Traci. Journal of Industrial Ecology, 6(3-4), 49-78. doi:10.1162/108819802766269539 | es_ES |
dc.description.references | Goedkoop, M., Hofstetter, P., Müller-Wenk, R., & Spriemsma, R. (1998). The ECO-indicator 98 explained. The International Journal of Life Cycle Assessment, 3(6), 352-360. doi:10.1007/bf02979347 | es_ES |
dc.description.references | Itsubo, N., Sakagami, M., Washida, T., Kokubu, K., & Inaba, A. (2004). Weighting across safeguard subjects for LCIA through the application of conjoint analysis. The International Journal of Life Cycle Assessment, 9(3), 196-205. doi:10.1007/bf02994194 | es_ES |
dc.description.references | New Earth SHDB v1.0 (Social Hotspot Database)https://www.socialhotspot.org/ | es_ES |
dc.description.references | GreenDelta PSILCA Databasehttps://psilca.net/ | es_ES |
dc.description.references | New Earth SHDB Databasehttps://www.socialhotspot.org/for-more-information.html | es_ES |
dc.description.references | Du, G., & Karoumi, R. (2013). Life cycle assessment of a railway bridge: comparison of two superstructure designs. Structure and Infrastructure Engineering, 9(11), 1149-1160. doi:10.1080/15732479.2012.670250 | es_ES |
dc.description.references | Penadés-Plà, V., Martí, J. V., García-Segura, T., & Yepes, V. (2017). Life-Cycle Assessment: A Comparison between Two Optimal Post-Tensioned Concrete Box-Girder Road Bridges. Sustainability, 9(10), 1864. doi:10.3390/su9101864 | es_ES |
dc.description.references | Penadés-Plà, V., García-Segura, T., Martí, J., & Yepes, V. (2018). An Optimization-LCA of a Prestressed Concrete Precast Bridge. Sustainability, 10(3), 685. doi:10.3390/su10030685 | es_ES |
dc.description.references | Pons, J. J., Penadés-Plà, V., Yepes, V., & Martí, J. V. (2018). Life cycle assessment of earth-retaining walls: An environmental comparison. Journal of Cleaner Production, 192, 411-420. doi:10.1016/j.jclepro.2018.04.268 | es_ES |
dc.description.references | Steele, K., Cole, G., Parke, G., Clarke, B., & Harding, J. (2003). Highway bridges and environment—sustainable perspectives. Proceedings of the Institution of Civil Engineers - Civil Engineering, 156(4), 176-182. doi:10.1680/cien.2003.156.4.176 | es_ES |
dc.description.references | BEDEC PR/PCT ITEC Material Databasehttps://metabase.itec.cat/vide/ca/bedec | es_ES |
dc.description.references | García-Segura, T., Yepes, V., Frangopol, D. M., & Yang, D. Y. (2017). Lifetime reliability-based optimization of post-tensioned box-girder bridges. Engineering Structures, 145, 381-391. doi:10.1016/j.engstruct.2017.05.013 | es_ES |
dc.description.references | PRASCEVIC, N., & PRASCEVIC, Z. (2017). APPLICATION OF FUZZY AHP FOR RANKING AND SELECTION OF ALTERNATIVES IN CONSTRUCTION PROJECT MANAGEMENT. Journal of Civil Engineering and Management, 23(8), 1123-1135. doi:10.3846/13923730.2017.1388278 | es_ES |
dc.description.references | García-Segura, T., Penadés-Plà, V., & Yepes, V. (2018). Sustainable bridge design by metamodel-assisted multi-objective optimization and decision-making under uncertainty. Journal of Cleaner Production, 202, 904-915. doi:10.1016/j.jclepro.2018.08.177 | es_ES |
dc.description.references | Pamučar, D., Badi, I., Sanja, K., & Obradović, R. (2018). A Novel Approach for the Selection of Power-Generation Technology Using a Linguistic Neutrosophic CODAS Method: A Case Study in Libya. Energies, 11(9), 2489. doi:10.3390/en11092489 | es_ES |
dc.description.references | Tait, M. W., & Cheung, W. M. (2016). A comparative cradle-to-gate life cycle assessment of three concrete mix designs. The International Journal of Life Cycle Assessment, 21(6), 847-860. doi:10.1007/s11367-016-1045-5 | es_ES |
dc.description.references | Sierra, L. A., Pellicer, E., & Yepes, V. (2017). Method for estimating the social sustainability of infrastructure projects. Environmental Impact Assessment Review, 65, 41-53. doi:10.1016/j.eiar.2017.02.004 | es_ES |
dc.description.references | Navarro, I. J., Yepes, V., Martí, J. V., & González-Vidosa, F. (2018). Life cycle impact assessment of corrosion preventive designs applied to prestressed concrete bridge decks. Journal of Cleaner Production, 196, 698-713. doi:10.1016/j.jclepro.2018.06.110 | es_ES |
dc.description.references | Hosseinijou, S. A., Mansour, S., & Shirazi, M. A. (2013). Social life cycle assessment for material selection: a case study of building materials. The International Journal of Life Cycle Assessment, 19(3), 620-645. doi:10.1007/s11367-013-0658-1 | es_ES |
dc.subject.ods | 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación | es_ES |