- -

On a stochastic logistic population model with time-varying carrying capacity

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

On a stochastic logistic population model with time-varying carrying capacity

Show full item record

Calatayud, J.; Cortés, J.; Dorini, FA.; Jornet, M. (2020). On a stochastic logistic population model with time-varying carrying capacity. Computational and Applied Mathematics. 39(4):1-16. https://doi.org/10.1007/s40314-020-01343-z

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/160898

Files in this item

Item Metadata

Title: On a stochastic logistic population model with time-varying carrying capacity
Author: Calatayud, J. Cortés, J.-C. Dorini, F. A. Jornet, M.
UPV Unit: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Issued date:
Abstract:
[EN] In this paper, we deal with the logistic growth model with a time-dependent carrying capacity that was proposed in the literature for the study of the total bacterial biomass during occlusion of healthy human skin. ...[+]
Subjects: Logistic growth model , Time-dependent carrying capacity , Random parameters , Probability density function
Copyrigths: Reserva de todos los derechos
Source:
Computational and Applied Mathematics. (issn: 0101-8205 )
DOI: 10.1007/s40314-020-01343-z
Publisher:
Springer-Verlag
Publisher version: https://doi.org/10.1007/s40314-020-01343-z
Project ID:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-89664-P/ES/PROBLEMAS DINAMICOS CON INCERTIDUMBRE SIMULABLE: MODELIZACION MATEMATICA, ANALISIS, COMPUTACION Y APLICACIONES/
Thanks:
This work has been supported by the Spanish Ministerio de Economia, Industria y Competitividad (MINECO), the Agencia Estatal de Investigacion (AEI), and Fondo Europeo de Desarrollo Regional (FEDER UE) Grant MTM2017-89664-P.[+]
Type: Artículo

References

Casabán MC, Cortés JC, Navarro-Quiles A, Romero JV, Roselló MD, Villanueva MD (2016) A comprehensive probabilistic solution of random SIS-type epidemiological models using the random variable transformation technique. Commun Nonlinear Sci Numer Simul 32:199–210

Casella G, Berger RL (2002) Statistical inference, 2nd edn. Duxbury, Pacific Grove

Dorini FA, Sampaio R (2012) Some results on the random wear coefficient of the Archard model. J Appl Mech 79(5):051008 [+]
Casabán MC, Cortés JC, Navarro-Quiles A, Romero JV, Roselló MD, Villanueva MD (2016) A comprehensive probabilistic solution of random SIS-type epidemiological models using the random variable transformation technique. Commun Nonlinear Sci Numer Simul 32:199–210

Casella G, Berger RL (2002) Statistical inference, 2nd edn. Duxbury, Pacific Grove

Dorini FA, Sampaio R (2012) Some results on the random wear coefficient of the Archard model. J Appl Mech 79(5):051008

Neckel T, Rupp F (2013) Random differential equations in scientific computing. Walter de Gruyter, Berlin

Rudin W (1976) Principles of mathematical analysis. In: International series in pure & applied mathematics, 3rd edn. McGraw-Hill Education, ISBN: 9780070542358

Safuan HM, Jovanoski Z, Towers IN, Sidhu HS (2013) Exact solution of a non-autonomous logistic population model. Ecol Model 251:99–102

Safuan H, Towers IN, Jovanoski Z, Sidhu HS (2011) A simple model for the total microbial biomass under occlusion of healthy human skin. In: MODSIM2011, 19th international congress on modelling and simulation. Modelling and simulation Society of Australia and New Zealand, pp 733–739

Scheffé H (1947) A useful convergence theorem for probability distributions. Ann. Math. Stat. 18(3):434–438

Tenorio L (2017) An introduction to data analysis and uncertainty quantification for inverse problems, vol 3. SIAM, Philadelphia

Udwadia FE (1989) Some results on maximum entropy distributions for parameters known to lie in finite intervals. SIAM Rev 31(1):103–109

van der Vaart AW (1998) Asymptotic statistics. Cambridge University Press, Cambridge. ISBN: 9780521784504

Wolfram Research Inc (2019) Mathematica, version 12.0, Champaign (2019)

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record