- -

On a stochastic logistic population model with time-varying carrying capacity

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

On a stochastic logistic population model with time-varying carrying capacity

Show simple item record

Files in this item

dc.contributor.author Calatayud, J. es_ES
dc.contributor.author Cortés, J.-C. es_ES
dc.contributor.author Dorini, F. A. es_ES
dc.contributor.author Jornet, M. es_ES
dc.date.accessioned 2021-02-09T04:31:45Z
dc.date.available 2021-02-09T04:31:45Z
dc.date.issued 2020-10-07 es_ES
dc.identifier.issn 0101-8205 es_ES
dc.identifier.uri http://hdl.handle.net/10251/160898
dc.description.abstract [EN] In this paper, we deal with the logistic growth model with a time-dependent carrying capacity that was proposed in the literature for the study of the total bacterial biomass during occlusion of healthy human skin. Accounting for data and model errors, randomness is incorporated into the equation by assuming that the input parameters are random variables. The uncertainty is quantified by approximations of the solution stochastic process via truncated series solution together with the random variable transformation method. Numerical examples illustrate the theoretical results. es_ES
dc.description.sponsorship This work has been supported by the Spanish Ministerio de Economia, Industria y Competitividad (MINECO), the Agencia Estatal de Investigacion (AEI), and Fondo Europeo de Desarrollo Regional (FEDER UE) Grant MTM2017-89664-P. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Computational and Applied Mathematics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Logistic growth model es_ES
dc.subject Time-dependent carrying capacity es_ES
dc.subject Random parameters es_ES
dc.subject Probability density function es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title On a stochastic logistic population model with time-varying carrying capacity es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s40314-020-01343-z es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-89664-P/ES/PROBLEMAS DINAMICOS CON INCERTIDUMBRE SIMULABLE: MODELIZACION MATEMATICA, ANALISIS, COMPUTACION Y APLICACIONES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Calatayud, J.; Cortés, J.; Dorini, FA.; Jornet, M. (2020). On a stochastic logistic population model with time-varying carrying capacity. Computational and Applied Mathematics. 39(4):1-16. https://doi.org/10.1007/s40314-020-01343-z es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s40314-020-01343-z es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 16 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 39 es_ES
dc.description.issue 4 es_ES
dc.relation.pasarela S\418364 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.description.references Casabán MC, Cortés JC, Navarro-Quiles A, Romero JV, Roselló MD, Villanueva MD (2016) A comprehensive probabilistic solution of random SIS-type epidemiological models using the random variable transformation technique. Commun Nonlinear Sci Numer Simul 32:199–210 es_ES
dc.description.references Casella G, Berger RL (2002) Statistical inference, 2nd edn. Duxbury, Pacific Grove es_ES
dc.description.references Dorini FA, Sampaio R (2012) Some results on the random wear coefficient of the Archard model. J Appl Mech 79(5):051008 es_ES
dc.description.references Neckel T, Rupp F (2013) Random differential equations in scientific computing. Walter de Gruyter, Berlin es_ES
dc.description.references Rudin W (1976) Principles of mathematical analysis. In: International series in pure & applied mathematics, 3rd edn. McGraw-Hill Education, ISBN: 9780070542358 es_ES
dc.description.references Safuan HM, Jovanoski Z, Towers IN, Sidhu HS (2013) Exact solution of a non-autonomous logistic population model. Ecol Model 251:99–102 es_ES
dc.description.references Safuan H, Towers IN, Jovanoski Z, Sidhu HS (2011) A simple model for the total microbial biomass under occlusion of healthy human skin. In: MODSIM2011, 19th international congress on modelling and simulation. Modelling and simulation Society of Australia and New Zealand, pp 733–739 es_ES
dc.description.references Scheffé H (1947) A useful convergence theorem for probability distributions. Ann. Math. Stat. 18(3):434–438 es_ES
dc.description.references Tenorio L (2017) An introduction to data analysis and uncertainty quantification for inverse problems, vol 3. SIAM, Philadelphia es_ES
dc.description.references Udwadia FE (1989) Some results on maximum entropy distributions for parameters known to lie in finite intervals. SIAM Rev 31(1):103–109 es_ES
dc.description.references van der Vaart AW (1998) Asymptotic statistics. Cambridge University Press, Cambridge. ISBN: 9780521784504 es_ES
dc.description.references Wolfram Research Inc (2019) Mathematica, version 12.0, Champaign (2019) es_ES


This item appears in the following Collection(s)

Show simple item record