dc.contributor.author |
Calatayud, J.
|
es_ES |
dc.contributor.author |
Cortés, J.-C.
|
es_ES |
dc.contributor.author |
Dorini, F. A.
|
es_ES |
dc.contributor.author |
Jornet, M.
|
es_ES |
dc.date.accessioned |
2021-02-09T04:31:45Z |
|
dc.date.available |
2021-02-09T04:31:45Z |
|
dc.date.issued |
2020-10-07 |
es_ES |
dc.identifier.issn |
0101-8205 |
es_ES |
dc.identifier.uri |
http://hdl.handle.net/10251/160898 |
|
dc.description.abstract |
[EN] In this paper, we deal with the logistic growth model with a time-dependent carrying capacity that was proposed in the literature for the study of the total bacterial biomass during occlusion of healthy human skin. Accounting for data and model errors, randomness is incorporated into the equation by assuming that the input parameters are random variables. The uncertainty is quantified by approximations of the solution stochastic process via truncated series solution together with the random variable transformation method. Numerical examples illustrate the theoretical results. |
es_ES |
dc.description.sponsorship |
This work has been supported by the Spanish Ministerio de Economia, Industria y Competitividad (MINECO), the Agencia Estatal de Investigacion (AEI), and Fondo Europeo de Desarrollo Regional (FEDER UE) Grant MTM2017-89664-P. |
es_ES |
dc.language |
Inglés |
es_ES |
dc.publisher |
Springer-Verlag |
es_ES |
dc.relation.ispartof |
Computational and Applied Mathematics |
es_ES |
dc.rights |
Reserva de todos los derechos |
es_ES |
dc.subject |
Logistic growth model |
es_ES |
dc.subject |
Time-dependent carrying capacity |
es_ES |
dc.subject |
Random parameters |
es_ES |
dc.subject |
Probability density function |
es_ES |
dc.subject.classification |
MATEMATICA APLICADA |
es_ES |
dc.title |
On a stochastic logistic population model with time-varying carrying capacity |
es_ES |
dc.type |
Artículo |
es_ES |
dc.identifier.doi |
10.1007/s40314-020-01343-z |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-89664-P/ES/PROBLEMAS DINAMICOS CON INCERTIDUMBRE SIMULABLE: MODELIZACION MATEMATICA, ANALISIS, COMPUTACION Y APLICACIONES/ |
es_ES |
dc.rights.accessRights |
Abierto |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada |
es_ES |
dc.description.bibliographicCitation |
Calatayud, J.; Cortés, J.; Dorini, FA.; Jornet, M. (2020). On a stochastic logistic population model with time-varying carrying capacity. Computational and Applied Mathematics. 39(4):1-16. https://doi.org/10.1007/s40314-020-01343-z |
es_ES |
dc.description.accrualMethod |
S |
es_ES |
dc.relation.publisherversion |
https://doi.org/10.1007/s40314-020-01343-z |
es_ES |
dc.description.upvformatpinicio |
1 |
es_ES |
dc.description.upvformatpfin |
16 |
es_ES |
dc.type.version |
info:eu-repo/semantics/publishedVersion |
es_ES |
dc.description.volume |
39 |
es_ES |
dc.description.issue |
4 |
es_ES |
dc.relation.pasarela |
S\418364 |
es_ES |
dc.contributor.funder |
Agencia Estatal de Investigación |
es_ES |
dc.contributor.funder |
European Regional Development Fund |
es_ES |
dc.contributor.funder |
Ministerio de Economía, Industria y Competitividad |
es_ES |
dc.description.references |
Casabán MC, Cortés JC, Navarro-Quiles A, Romero JV, Roselló MD, Villanueva MD (2016) A comprehensive probabilistic solution of random SIS-type epidemiological models using the random variable transformation technique. Commun Nonlinear Sci Numer Simul 32:199–210 |
es_ES |
dc.description.references |
Casella G, Berger RL (2002) Statistical inference, 2nd edn. Duxbury, Pacific Grove |
es_ES |
dc.description.references |
Dorini FA, Sampaio R (2012) Some results on the random wear coefficient of the Archard model. J Appl Mech 79(5):051008 |
es_ES |
dc.description.references |
Neckel T, Rupp F (2013) Random differential equations in scientific computing. Walter de Gruyter, Berlin |
es_ES |
dc.description.references |
Rudin W (1976) Principles of mathematical analysis. In: International series in pure & applied mathematics, 3rd edn. McGraw-Hill Education, ISBN: 9780070542358 |
es_ES |
dc.description.references |
Safuan HM, Jovanoski Z, Towers IN, Sidhu HS (2013) Exact solution of a non-autonomous logistic population model. Ecol Model 251:99–102 |
es_ES |
dc.description.references |
Safuan H, Towers IN, Jovanoski Z, Sidhu HS (2011) A simple model for the total microbial biomass under occlusion of healthy human skin. In: MODSIM2011, 19th international congress on modelling and simulation. Modelling and simulation Society of Australia and New Zealand, pp 733–739 |
es_ES |
dc.description.references |
Scheffé H (1947) A useful convergence theorem for probability distributions. Ann. Math. Stat. 18(3):434–438 |
es_ES |
dc.description.references |
Tenorio L (2017) An introduction to data analysis and uncertainty quantification for inverse problems, vol 3. SIAM, Philadelphia |
es_ES |
dc.description.references |
Udwadia FE (1989) Some results on maximum entropy distributions for parameters known to lie in finite intervals. SIAM Rev 31(1):103–109 |
es_ES |
dc.description.references |
van der Vaart AW (1998) Asymptotic statistics. Cambridge University Press, Cambridge. ISBN: 9780521784504 |
es_ES |
dc.description.references |
Wolfram Research Inc (2019) Mathematica, version 12.0, Champaign (2019) |
es_ES |