- -

Performance of a membrane-coupled high-rate algal pond for urban wastewater treatment at demonstration scale

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Performance of a membrane-coupled high-rate algal pond for urban wastewater treatment at demonstration scale

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Robles Martínez, Ángel es_ES
dc.contributor.author Capson-Tojo, Gabriel es_ES
dc.contributor.author Gales, Amandine es_ES
dc.contributor.author Viruela, Alexandre es_ES
dc.contributor.author Sialve, Bruno es_ES
dc.contributor.author Seco, Aurora es_ES
dc.contributor.author Steyer, Jean-Philippe es_ES
dc.contributor.author FERRER, J. es_ES
dc.date.accessioned 2021-02-09T04:32:02Z
dc.date.available 2021-02-09T04:32:02Z
dc.date.issued 2020-04 es_ES
dc.identifier.issn 0960-8524 es_ES
dc.identifier.uri http://hdl.handle.net/10251/160902
dc.description.abstract [EN] The objective of this study was to evaluate the performance of an outdoor membrane-coupled high-rate algal pond equipped with industrial-scale membranes for treating urban wastewater. Decoupling biomass retention time (BRT) and hydraulic retention time (HRT) by membrane filtration resulted in improved process efficiencies, with higher biomass productivities and nutrient removal rates when operating at low HRTs. At 6 days of BRT, biomass productivity increased from 30 to 66 and to 95 g.m(-3).d(-1) when operating at HRTs of 6, 4 and 2.5 days, respectively. The corresponding nitrogen removal rates were 4, 8 and 11 g N.m(-3).d(-1) and the phosphorous removal rates were 0.5, 1.3 and 1.6 g P.m(-3).d(-1). The system was operated keeping moderate specific air demands (0.25 m(3).m(-2).h(-1)), resulting in reasonable operating and maintenance costs ((sic)0.04 per m(3)) and energy requirements (0.29 kWh per m(3)). The produced water was free of pathogens and could be directly used for reusing purposes. es_ES
dc.description.sponsorship The authors thank the financial support of the French National Research Agency (ANR) for the "Phycover" project (project ANR-14-CE04-0011), the Spanish Ministry of Economy and Competitiveness jointly with the European Regional Development Fund (project CTM2011-28595-C02-01/02), and the European Climate KIC association for the "MAB 2.0" project (APIN0057_2015-3.6-230_P066-05). Angel Robles is also grateful to the Generalitat Valenciana for the financial aid received via a VALi+d post-doctoral grant (APOSTD/2014/049). Gabriel Capson-Tojo would like to acknowledge the Xunta de Galicia for his postdoctoral fellowship (ED481B-2018/017). es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Bioresource Technology es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject HRAP es_ES
dc.subject Nutrient recovery es_ES
dc.subject Ultrafiltration es_ES
dc.subject Hollow-fibre membranes es_ES
dc.subject Industrial-scale es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.subject.classification TECNOLOGIA DEL MEDIO AMBIENTE es_ES
dc.title Performance of a membrane-coupled high-rate algal pond for urban wastewater treatment at demonstration scale es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.biortech.2019.122672 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ANR//ANR-14-CE04-0011 /FR/Sustainable microalgal production by recycling phosphorus and nitrogen from wastewaters : toward a next generation of sewage treatment plant/Phycover/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EIT Climate-KIC//APIN0057_2015-3.6-230_P066-05/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Xunta de Galicia//ED481B-2018%2F017/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CTM2011-28595-C02-01/ES/MODELACION Y CONTROL DE LA RECUPERACION COMO BIOGAS DE LA ENERGIA DE LA MATERIA ORGANICA Y NUTRIENTES DEL AGUA RESIDUAL, ACOPLANDO UN ANBRM Y UN CULTIVO DE MICROALGAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//APOSTD%2F2014%2F049/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation Robles Martínez, Á.; Capson-Tojo, G.; Gales, A.; Viruela, A.; Sialve, B.; Seco, A.; Steyer, J.... (2020). Performance of a membrane-coupled high-rate algal pond for urban wastewater treatment at demonstration scale. Bioresource Technology. 301:1-10. https://doi.org/10.1016/j.biortech.2019.122672 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.biortech.2019.122672 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 10 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 301 es_ES
dc.identifier.pmid 31945681 es_ES
dc.relation.pasarela S\421257 es_ES
dc.contributor.funder EIT Climate-KIC es_ES
dc.contributor.funder Xunta de Galicia es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Agence Nationale de la Recherche, Francia es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Arbib, Z., de Godos, I., Ruiz, J., & Perales, J. A. (2017). Optimization of pilot high rate algal ponds for simultaneous nutrient removal and lipids production. Science of The Total Environment, 589, 66-72. doi:10.1016/j.scitotenv.2017.02.206 es_ES
dc.description.references Bhave, R., Kuritz, T., Powell, L., & Adcock, D. (2012). Membrane-Based Energy Efficient Dewatering of Microalgae in Biofuels Production and Recovery of Value Added Co-Products. Environmental Science & Technology, 46(10), 5599-5606. doi:10.1021/es204107d es_ES
dc.description.references Bilad, M. R., Arafat, H. A., & Vankelecom, I. F. J. (2014). Membrane technology in microalgae cultivation and harvesting: A review. Biotechnology Advances, 32(7), 1283-1300. doi:10.1016/j.biotechadv.2014.07.008 es_ES
dc.description.references Bilad, M. R., Discart, V., Vandamme, D., Foubert, I., Muylaert, K., & Vankelecom, I. F. J. (2014). Coupled cultivation and pre-harvesting of microalgae in a membrane photobioreactor (MPBR). Bioresource Technology, 155, 410-417. doi:10.1016/j.biortech.2013.05.026 es_ES
dc.description.references Bilad, M. R., Vandamme, D., Foubert, I., Muylaert, K., & Vankelecom, I. F. J. (2012). Harvesting microalgal biomass using submerged microfiltration membranes. Bioresource Technology, 111, 343-352. doi:10.1016/j.biortech.2012.02.009 es_ES
dc.description.references Boelee, N. C., Temmink, H., Janssen, M., Buisman, C. J. N., & Wijffels, R. H. (2011). Nitrogen and phosphorus removal from municipal wastewater effluent using microalgal biofilms. Water Research, 45(18), 5925-5933. doi:10.1016/j.watres.2011.08.044 es_ES
dc.description.references Capson-Tojo, G., Rouez, M., Crest, M., Trably, E., Steyer, J.-P., Bernet, N., … Escudié, R. (2017). Kinetic study of dry anaerobic co-digestion of food waste and cardboard for methane production. Waste Management, 69, 470-479. doi:10.1016/j.wasman.2017.09.002 es_ES
dc.description.references Craggs, R. J., Heubeck, S., Lundquist, T. J., & Benemann, J. R. (2011). Algal biofuels from wastewater treatment high rate algal ponds. Water Science and Technology, 63(4), 660-665. doi:10.2166/wst.2011.100 es_ES
dc.description.references Dalrymple, O. K., Halfhide, T., Udom, I., Gilles, B., Wolan, J., Zhang, Q., & Ergas, S. (2013). Wastewater use in algae production for generation of renewable resources: a review and preliminary results. Aquatic Biosystems, 9(1), 2. doi:10.1186/2046-9063-9-2 es_ES
dc.description.references Drexler, I. L. C., & Yeh, D. H. (2014). Membrane applications for microalgae cultivation and harvesting: a review. Reviews in Environmental Science and Bio/Technology, 13(4), 487-504. doi:10.1007/s11157-014-9350-6 es_ES
dc.description.references Fernández-Sevilla, J. M., Brindley, C., Jiménez-Ruíz, N., & Acién, F. G. (2018). A simple equation to quantify the effect of frequency of light/dark cycles on the photosynthetic response of microalgae under intermittent light. Algal Research, 35, 479-487. doi:10.1016/j.algal.2018.09.026 es_ES
dc.description.references Foladori, P., Petrini, S., & Andreottola, G. (2018). Evolution of real municipal wastewater treatment in photobioreactors and microalgae-bacteria consortia using real-time parameters. Chemical Engineering Journal, 345, 507-516. doi:10.1016/j.cej.2018.03.178 es_ES
dc.description.references Galès, A., Bonnafous, A., Carré, C., Jauzein, V., Lanouguère, E., Le Floc’h, E., … Fouilland, E. (2019). Importance of ecological interactions during wastewater treatment using High Rate Algal Ponds under different temperate climates. Algal Research, 40, 101508. doi:10.1016/j.algal.2019.101508 es_ES
dc.description.references González-Camejo, J., Jiménez-Benítez, A., Ruano, M. V., Robles, A., Barat, R., & Ferrer, J. (2019). Optimising an outdoor membrane photobioreactor for tertiary sewage treatment. Journal of Environmental Management, 245, 76-85. doi:10.1016/j.jenvman.2019.05.010 es_ES
dc.description.references Honda, R., Boonnorat, J., Chiemchaisri, C., Chiemchaisri, W., & Yamamoto, K. (2012). Carbon dioxide capture and nutrients removal utilizing treated sewage by concentrated microalgae cultivation in a membrane photobioreactor. Bioresource Technology, 125, 59-64. doi:10.1016/j.biortech.2012.08.138 es_ES
dc.description.references Kumar, K., Mishra, S. K., Shrivastav, A., Park, M. S., & Yang, J.-W. (2015). Recent trends in the mass cultivation of algae in raceway ponds. Renewable and Sustainable Energy Reviews, 51, 875-885. doi:10.1016/j.rser.2015.06.033 es_ES
dc.description.references Lazarova, V., Choo, K.-H., Cornel, P., 2012. Water-Energy Interactions in Water Reuse. https://doi.org/10.2166/9781780400662. es_ES
dc.description.references Liao, Y., Bokhary, A., Maleki, E., & Liao, B. (2018). A review of membrane fouling and its control in algal-related membrane processes. Bioresource Technology, 264, 343-358. doi:10.1016/j.biortech.2018.06.102 es_ES
dc.description.references Luo, Y., Le-Clech, P., & Henderson, R. K. (2017). Simultaneous microalgae cultivation and wastewater treatment in submerged membrane photobioreactors: A review. Algal Research, 24, 425-437. doi:10.1016/j.algal.2016.10.026 es_ES
dc.description.references Marbelia, L., Bilad, M. R., Passaris, I., Discart, V., Vandamme, D., Beuckels, A., … Vankelecom, I. F. J. (2014). Membrane photobioreactors for integrated microalgae cultivation and nutrient remediation of membrane bioreactors effluent. Bioresource Technology, 163, 228-235. doi:10.1016/j.biortech.2014.04.012 es_ES
dc.description.references Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews, 14(1), 217-232. doi:10.1016/j.rser.2009.07.020 es_ES
dc.description.references Novoveská, L., Zapata, A. K. M., Zabolotney, J. B., Atwood, M. C., & Sundstrom, E. R. (2016). Optimizing microalgae cultivation and wastewater treatment in large-scale offshore photobioreactors. Algal Research, 18, 86-94. doi:10.1016/j.algal.2016.05.033 es_ES
dc.description.references Perin, G., Cimetta, E., Monetti, F., Morosinotto, T., & Bezzo, F. (2016). Novel micro-photobioreactor design and monitoring method for assessing microalgae response to light intensity. Algal Research, 19, 69-76. doi:10.1016/j.algal.2016.07.015 es_ES
dc.description.references Pretel, R., Robles, A., Ruano, M. V., Seco, A., & Ferrer, J. (2016). A plant-wide energy model for wastewater treatment plants: application to anaerobic membrane bioreactor technology. Environmental Technology, 37(18), 2298-2315. doi:10.1080/09593330.2016.1148903 es_ES
dc.description.references Ras, M., Steyer, J.-P., & Bernard, O. (2013). Temperature effect on microalgae: a crucial factor for outdoor production. Reviews in Environmental Science and Bio/Technology, 12(2), 153-164. doi:10.1007/s11157-013-9310-6 es_ES
dc.description.references Robles, A., Capson-Tojo, G., Ruano, M. V., Seco, A., & Ferrer, J. (2018). Real-time optimization of the key filtration parameters in an AnMBR: Urban wastewater mono-digestion vs. co-digestion with domestic food waste. Waste Management, 80, 299-309. doi:10.1016/j.wasman.2018.09.031 es_ES
dc.description.references Robles, A., Ruano, M. V., Ribes, J., Seco, A., & Ferrer, J. (2014). Model-based automatic tuning of a filtration control system for submerged anaerobic membrane bioreactors (AnMBR). Journal of Membrane Science, 465, 14-26. doi:10.1016/j.memsci.2014.04.012 es_ES
dc.description.references Salama, E.-S., Kurade, M. B., Abou-Shanab, R. A. I., El-Dalatony, M. M., Yang, I.-S., Min, B., & Jeon, B.-H. (2017). Recent progress in microalgal biomass production coupled with wastewater treatment for biofuel generation. Renewable and Sustainable Energy Reviews, 79, 1189-1211. doi:10.1016/j.rser.2017.05.091 es_ES
dc.description.references Seco, A., Aparicio, S., González-Camejo, J., Jiménez-Benítez, A., Mateo, O., Mora, J. F., … Ferrer, J. (2018). Resource recovery from sulphate-rich sewage through an innovative anaerobic-based water resource recovery facility (WRRF). Water Science and Technology, 78(9), 1925-1936. doi:10.2166/wst.2018.492 es_ES
dc.description.references Sheng, A. L. K., Bilad, M. R., Osman, N. B., & Arahman, N. (2017). Sequencing batch membrane photobioreactor for real secondary effluent polishing using native microalgae: Process performance and full-scale projection. Journal of Cleaner Production, 168, 708-715. doi:10.1016/j.jclepro.2017.09.083 es_ES
dc.description.references Shoener, B. D., Schramm, S. M., Béline, F., Bernard, O., Martínez, C., Plósz, B. G., … Guest, J. S. (2019). Microalgae and cyanobacteria modeling in water resource recovery facilities: A critical review. Water Research X, 2, 100024. doi:10.1016/j.wroa.2018.100024 es_ES
dc.description.references Solimeno, A., García, J., 2017. Microalgae-bacteria models evolution: from microalgae steady-state to integrated microalgae-bacteria wastewater treatment models – a comparative review. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2017.07.114. es_ES
dc.description.references Sun, L., Tian, Y., Zhang, J., Cui, H., Zuo, W., & Li, J. (2018). A novel symbiotic system combining algae and sludge membrane bioreactor technology for wastewater treatment and membrane fouling mitigation: Performance and mechanism. Chemical Engineering Journal, 344, 246-253. doi:10.1016/j.cej.2018.03.090 es_ES
dc.description.references Sun, X., Wang, C., Tong, Y., Wang, W., & Wei, J. (2013). A comparative study of microfiltration and ultrafiltration for algae harvesting. Algal Research, 2(4), 437-444. doi:10.1016/j.algal.2013.08.004 es_ES
dc.description.references Turon, V., Trably, E., Fayet, A., Fouilland, E., & Steyer, J.-P. (2015). Raw dark fermentation effluent to support heterotrophic microalgae growth: microalgae successfully outcompete bacteria for acetate. Algal Research, 12, 119-125. doi:10.1016/j.algal.2015.08.011 es_ES
dc.description.references Viruela, A., Robles, Á., Durán, F., Ruano, M. V., Barat, R., Ferrer, J., & Seco, A. (2018). Performance of an outdoor membrane photobioreactor for resource recovery from anaerobically treated sewage. Journal of Cleaner Production, 178, 665-674. doi:10.1016/j.jclepro.2017.12.223 es_ES
dc.description.references Wang, Y., Guo, W., Yen, H.-W., Ho, S.-H., Lo, Y.-C., Cheng, C.-L., … Chang, J.-S. (2015). Cultivation of Chlorella vulgaris JSC-6 with swine wastewater for simultaneous nutrient/COD removal and carbohydrate production. Bioresource Technology, 198, 619-625. doi:10.1016/j.biortech.2015.09.067 es_ES
dc.description.references Wang, Y., Ho, S.-H., Cheng, C.-L., Guo, W.-Q., Nagarajan, D., Ren, N.-Q., … Chang, J.-S. (2016). Perspectives on the feasibility of using microalgae for industrial wastewater treatment. Bioresource Technology, 222, 485-497. doi:10.1016/j.biortech.2016.09.106 es_ES
dc.description.references Wicaksana, F., Fane, A. G., Pongpairoj, P., & Field, R. (2012). Microfiltration of algae (Chlorella sorokiniana): Critical flux, fouling and transmission. Journal of Membrane Science, 387-388, 83-92. doi:10.1016/j.memsci.2011.10.013 es_ES
dc.description.references Yang, J., Gou, Y., Fang, F., Guo, J., Lu, L., Zhou, Y., & Ma, H. (2018). Potential of wastewater treatment using a concentrated and suspended algal-bacterial consortium in a photo membrane bioreactor. Chemical Engineering Journal, 335, 154-160. doi:10.1016/j.cej.2017.10.149 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem