- -

Performance of a membrane-coupled high-rate algal pond for urban wastewater treatment at demonstration scale

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Performance of a membrane-coupled high-rate algal pond for urban wastewater treatment at demonstration scale

Mostrar el registro completo del ítem

Robles Martínez, Á.; Capson-Tojo, G.; Gales, A.; Viruela, A.; Sialve, B.; Seco, A.; Steyer, J.... (2020). Performance of a membrane-coupled high-rate algal pond for urban wastewater treatment at demonstration scale. Bioresource Technology. 301:1-10. https://doi.org/10.1016/j.biortech.2019.122672

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/160902

Ficheros en el ítem

Metadatos del ítem

Título: Performance of a membrane-coupled high-rate algal pond for urban wastewater treatment at demonstration scale
Autor: Robles Martínez, Ángel Capson-Tojo, Gabriel Gales, Amandine Viruela, Alexandre Sialve, Bruno Seco, Aurora Steyer, Jean-Philippe FERRER, J.
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient
Fecha difusión:
Resumen:
[EN] The objective of this study was to evaluate the performance of an outdoor membrane-coupled high-rate algal pond equipped with industrial-scale membranes for treating urban wastewater. Decoupling biomass retention time ...[+]
Palabras clave: HRAP , Nutrient recovery , Ultrafiltration , Hollow-fibre membranes , Industrial-scale
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Bioresource Technology. (issn: 0960-8524 )
DOI: 10.1016/j.biortech.2019.122672
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.biortech.2019.122672
Código del Proyecto:
info:eu-repo/grantAgreement/ANR//ANR-14-CE04-0011 /FR/Sustainable microalgal production by recycling phosphorus and nitrogen from wastewaters : toward a next generation of sewage treatment plant/Phycover/
info:eu-repo/grantAgreement/EIT Climate-KIC//APIN0057_2015-3.6-230_P066-05/
info:eu-repo/grantAgreement/Xunta de Galicia//ED481B-2018%2F017/
info:eu-repo/grantAgreement/MICINN//CTM2011-28595-C02-01/ES/MODELACION Y CONTROL DE LA RECUPERACION COMO BIOGAS DE LA ENERGIA DE LA MATERIA ORGANICA Y NUTRIENTES DEL AGUA RESIDUAL, ACOPLANDO UN ANBRM Y UN CULTIVO DE MICROALGAS/
info:eu-repo/grantAgreement/GVA//APOSTD%2F2014%2F049/
Agradecimientos:
The authors thank the financial support of the French National Research Agency (ANR) for the "Phycover" project (project ANR-14-CE04-0011), the Spanish Ministry of Economy and Competitiveness jointly with the European ...[+]
Tipo: Artículo

References

Arbib, Z., de Godos, I., Ruiz, J., & Perales, J. A. (2017). Optimization of pilot high rate algal ponds for simultaneous nutrient removal and lipids production. Science of The Total Environment, 589, 66-72. doi:10.1016/j.scitotenv.2017.02.206

Bhave, R., Kuritz, T., Powell, L., & Adcock, D. (2012). Membrane-Based Energy Efficient Dewatering of Microalgae in Biofuels Production and Recovery of Value Added Co-Products. Environmental Science & Technology, 46(10), 5599-5606. doi:10.1021/es204107d

Bilad, M. R., Arafat, H. A., & Vankelecom, I. F. J. (2014). Membrane technology in microalgae cultivation and harvesting: A review. Biotechnology Advances, 32(7), 1283-1300. doi:10.1016/j.biotechadv.2014.07.008 [+]
Arbib, Z., de Godos, I., Ruiz, J., & Perales, J. A. (2017). Optimization of pilot high rate algal ponds for simultaneous nutrient removal and lipids production. Science of The Total Environment, 589, 66-72. doi:10.1016/j.scitotenv.2017.02.206

Bhave, R., Kuritz, T., Powell, L., & Adcock, D. (2012). Membrane-Based Energy Efficient Dewatering of Microalgae in Biofuels Production and Recovery of Value Added Co-Products. Environmental Science & Technology, 46(10), 5599-5606. doi:10.1021/es204107d

Bilad, M. R., Arafat, H. A., & Vankelecom, I. F. J. (2014). Membrane technology in microalgae cultivation and harvesting: A review. Biotechnology Advances, 32(7), 1283-1300. doi:10.1016/j.biotechadv.2014.07.008

Bilad, M. R., Discart, V., Vandamme, D., Foubert, I., Muylaert, K., & Vankelecom, I. F. J. (2014). Coupled cultivation and pre-harvesting of microalgae in a membrane photobioreactor (MPBR). Bioresource Technology, 155, 410-417. doi:10.1016/j.biortech.2013.05.026

Bilad, M. R., Vandamme, D., Foubert, I., Muylaert, K., & Vankelecom, I. F. J. (2012). Harvesting microalgal biomass using submerged microfiltration membranes. Bioresource Technology, 111, 343-352. doi:10.1016/j.biortech.2012.02.009

Boelee, N. C., Temmink, H., Janssen, M., Buisman, C. J. N., & Wijffels, R. H. (2011). Nitrogen and phosphorus removal from municipal wastewater effluent using microalgal biofilms. Water Research, 45(18), 5925-5933. doi:10.1016/j.watres.2011.08.044

Capson-Tojo, G., Rouez, M., Crest, M., Trably, E., Steyer, J.-P., Bernet, N., … Escudié, R. (2017). Kinetic study of dry anaerobic co-digestion of food waste and cardboard for methane production. Waste Management, 69, 470-479. doi:10.1016/j.wasman.2017.09.002

Craggs, R. J., Heubeck, S., Lundquist, T. J., & Benemann, J. R. (2011). Algal biofuels from wastewater treatment high rate algal ponds. Water Science and Technology, 63(4), 660-665. doi:10.2166/wst.2011.100

Dalrymple, O. K., Halfhide, T., Udom, I., Gilles, B., Wolan, J., Zhang, Q., & Ergas, S. (2013). Wastewater use in algae production for generation of renewable resources: a review and preliminary results. Aquatic Biosystems, 9(1), 2. doi:10.1186/2046-9063-9-2

Drexler, I. L. C., & Yeh, D. H. (2014). Membrane applications for microalgae cultivation and harvesting: a review. Reviews in Environmental Science and Bio/Technology, 13(4), 487-504. doi:10.1007/s11157-014-9350-6

Fernández-Sevilla, J. M., Brindley, C., Jiménez-Ruíz, N., & Acién, F. G. (2018). A simple equation to quantify the effect of frequency of light/dark cycles on the photosynthetic response of microalgae under intermittent light. Algal Research, 35, 479-487. doi:10.1016/j.algal.2018.09.026

Foladori, P., Petrini, S., & Andreottola, G. (2018). Evolution of real municipal wastewater treatment in photobioreactors and microalgae-bacteria consortia using real-time parameters. Chemical Engineering Journal, 345, 507-516. doi:10.1016/j.cej.2018.03.178

Galès, A., Bonnafous, A., Carré, C., Jauzein, V., Lanouguère, E., Le Floc’h, E., … Fouilland, E. (2019). Importance of ecological interactions during wastewater treatment using High Rate Algal Ponds under different temperate climates. Algal Research, 40, 101508. doi:10.1016/j.algal.2019.101508

González-Camejo, J., Jiménez-Benítez, A., Ruano, M. V., Robles, A., Barat, R., & Ferrer, J. (2019). Optimising an outdoor membrane photobioreactor for tertiary sewage treatment. Journal of Environmental Management, 245, 76-85. doi:10.1016/j.jenvman.2019.05.010

Honda, R., Boonnorat, J., Chiemchaisri, C., Chiemchaisri, W., & Yamamoto, K. (2012). Carbon dioxide capture and nutrients removal utilizing treated sewage by concentrated microalgae cultivation in a membrane photobioreactor. Bioresource Technology, 125, 59-64. doi:10.1016/j.biortech.2012.08.138

Kumar, K., Mishra, S. K., Shrivastav, A., Park, M. S., & Yang, J.-W. (2015). Recent trends in the mass cultivation of algae in raceway ponds. Renewable and Sustainable Energy Reviews, 51, 875-885. doi:10.1016/j.rser.2015.06.033

Lazarova, V., Choo, K.-H., Cornel, P., 2012. Water-Energy Interactions in Water Reuse. https://doi.org/10.2166/9781780400662.

Liao, Y., Bokhary, A., Maleki, E., & Liao, B. (2018). A review of membrane fouling and its control in algal-related membrane processes. Bioresource Technology, 264, 343-358. doi:10.1016/j.biortech.2018.06.102

Luo, Y., Le-Clech, P., & Henderson, R. K. (2017). Simultaneous microalgae cultivation and wastewater treatment in submerged membrane photobioreactors: A review. Algal Research, 24, 425-437. doi:10.1016/j.algal.2016.10.026

Marbelia, L., Bilad, M. R., Passaris, I., Discart, V., Vandamme, D., Beuckels, A., … Vankelecom, I. F. J. (2014). Membrane photobioreactors for integrated microalgae cultivation and nutrient remediation of membrane bioreactors effluent. Bioresource Technology, 163, 228-235. doi:10.1016/j.biortech.2014.04.012

Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews, 14(1), 217-232. doi:10.1016/j.rser.2009.07.020

Novoveská, L., Zapata, A. K. M., Zabolotney, J. B., Atwood, M. C., & Sundstrom, E. R. (2016). Optimizing microalgae cultivation and wastewater treatment in large-scale offshore photobioreactors. Algal Research, 18, 86-94. doi:10.1016/j.algal.2016.05.033

Perin, G., Cimetta, E., Monetti, F., Morosinotto, T., & Bezzo, F. (2016). Novel micro-photobioreactor design and monitoring method for assessing microalgae response to light intensity. Algal Research, 19, 69-76. doi:10.1016/j.algal.2016.07.015

Pretel, R., Robles, A., Ruano, M. V., Seco, A., & Ferrer, J. (2016). A plant-wide energy model for wastewater treatment plants: application to anaerobic membrane bioreactor technology. Environmental Technology, 37(18), 2298-2315. doi:10.1080/09593330.2016.1148903

Ras, M., Steyer, J.-P., & Bernard, O. (2013). Temperature effect on microalgae: a crucial factor for outdoor production. Reviews in Environmental Science and Bio/Technology, 12(2), 153-164. doi:10.1007/s11157-013-9310-6

Robles, A., Capson-Tojo, G., Ruano, M. V., Seco, A., & Ferrer, J. (2018). Real-time optimization of the key filtration parameters in an AnMBR: Urban wastewater mono-digestion vs. co-digestion with domestic food waste. Waste Management, 80, 299-309. doi:10.1016/j.wasman.2018.09.031

Robles, A., Ruano, M. V., Ribes, J., Seco, A., & Ferrer, J. (2014). Model-based automatic tuning of a filtration control system for submerged anaerobic membrane bioreactors (AnMBR). Journal of Membrane Science, 465, 14-26. doi:10.1016/j.memsci.2014.04.012

Salama, E.-S., Kurade, M. B., Abou-Shanab, R. A. I., El-Dalatony, M. M., Yang, I.-S., Min, B., & Jeon, B.-H. (2017). Recent progress in microalgal biomass production coupled with wastewater treatment for biofuel generation. Renewable and Sustainable Energy Reviews, 79, 1189-1211. doi:10.1016/j.rser.2017.05.091

Seco, A., Aparicio, S., González-Camejo, J., Jiménez-Benítez, A., Mateo, O., Mora, J. F., … Ferrer, J. (2018). Resource recovery from sulphate-rich sewage through an innovative anaerobic-based water resource recovery facility (WRRF). Water Science and Technology, 78(9), 1925-1936. doi:10.2166/wst.2018.492

Sheng, A. L. K., Bilad, M. R., Osman, N. B., & Arahman, N. (2017). Sequencing batch membrane photobioreactor for real secondary effluent polishing using native microalgae: Process performance and full-scale projection. Journal of Cleaner Production, 168, 708-715. doi:10.1016/j.jclepro.2017.09.083

Shoener, B. D., Schramm, S. M., Béline, F., Bernard, O., Martínez, C., Plósz, B. G., … Guest, J. S. (2019). Microalgae and cyanobacteria modeling in water resource recovery facilities: A critical review. Water Research X, 2, 100024. doi:10.1016/j.wroa.2018.100024

Solimeno, A., García, J., 2017. Microalgae-bacteria models evolution: from microalgae steady-state to integrated microalgae-bacteria wastewater treatment models – a comparative review. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2017.07.114.

Sun, L., Tian, Y., Zhang, J., Cui, H., Zuo, W., & Li, J. (2018). A novel symbiotic system combining algae and sludge membrane bioreactor technology for wastewater treatment and membrane fouling mitigation: Performance and mechanism. Chemical Engineering Journal, 344, 246-253. doi:10.1016/j.cej.2018.03.090

Sun, X., Wang, C., Tong, Y., Wang, W., & Wei, J. (2013). A comparative study of microfiltration and ultrafiltration for algae harvesting. Algal Research, 2(4), 437-444. doi:10.1016/j.algal.2013.08.004

Turon, V., Trably, E., Fayet, A., Fouilland, E., & Steyer, J.-P. (2015). Raw dark fermentation effluent to support heterotrophic microalgae growth: microalgae successfully outcompete bacteria for acetate. Algal Research, 12, 119-125. doi:10.1016/j.algal.2015.08.011

Viruela, A., Robles, Á., Durán, F., Ruano, M. V., Barat, R., Ferrer, J., & Seco, A. (2018). Performance of an outdoor membrane photobioreactor for resource recovery from anaerobically treated sewage. Journal of Cleaner Production, 178, 665-674. doi:10.1016/j.jclepro.2017.12.223

Wang, Y., Guo, W., Yen, H.-W., Ho, S.-H., Lo, Y.-C., Cheng, C.-L., … Chang, J.-S. (2015). Cultivation of Chlorella vulgaris JSC-6 with swine wastewater for simultaneous nutrient/COD removal and carbohydrate production. Bioresource Technology, 198, 619-625. doi:10.1016/j.biortech.2015.09.067

Wang, Y., Ho, S.-H., Cheng, C.-L., Guo, W.-Q., Nagarajan, D., Ren, N.-Q., … Chang, J.-S. (2016). Perspectives on the feasibility of using microalgae for industrial wastewater treatment. Bioresource Technology, 222, 485-497. doi:10.1016/j.biortech.2016.09.106

Wicaksana, F., Fane, A. G., Pongpairoj, P., & Field, R. (2012). Microfiltration of algae (Chlorella sorokiniana): Critical flux, fouling and transmission. Journal of Membrane Science, 387-388, 83-92. doi:10.1016/j.memsci.2011.10.013

Yang, J., Gou, Y., Fang, F., Guo, J., Lu, L., Zhou, Y., & Ma, H. (2018). Potential of wastewater treatment using a concentrated and suspended algal-bacterial consortium in a photo membrane bioreactor. Chemical Engineering Journal, 335, 154-160. doi:10.1016/j.cej.2017.10.149

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem