- -

Steel-Concrete Composite Bridges: Design, Life Cycle Assessment, Maintenance, and Decision-Making

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Steel-Concrete Composite Bridges: Design, Life Cycle Assessment, Maintenance, and Decision-Making

Mostrar el registro completo del ítem

Martínez-Muñoz, D.; Martí Albiñana, JV.; Yepes, V. (2020). Steel-Concrete Composite Bridges: Design, Life Cycle Assessment, Maintenance, and Decision-Making. Advances in Civil Engineering. 2020:1-13. https://doi.org/10.1155/2020/8823370

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/160905

Ficheros en el ítem

Metadatos del ítem

Título: Steel-Concrete Composite Bridges: Design, Life Cycle Assessment, Maintenance, and Decision-Making
Autor: Martínez-Muñoz, D. Martí Albiñana, José Vicente Yepes, V.
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil
Fecha difusión:
Resumen:
[EN] Steel-concrete composite bridges are used as an alternative to concrete bridges because of their ability to adapt their geometry to design constraints and the possibility of reusing some of the materials in the ...[+]
Palabras clave: Composite bridges , Life cycle assessment , Maintenance , Decision making
Derechos de uso: Reconocimiento (by)
Fuente:
Advances in Civil Engineering. (issn: 1687-8086 )
DOI: 10.1155/2020/8823370
Editorial:
Hindawi Limited
Versión del editor: https://doi.org/10.1155/2020/8823370
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIA2017-85098-R/ES/DISEÑO Y MANTENIMIENTO OPTIMO ROBUSTO Y BASADO EN FIABILIDAD DE PUENTES E INFRAESTRUCTURAS VIARIAS DE ALTA EFICIENCIA SOCIAL Y MEDIOAMBIENTAL BAJO PRESUPUESTOS RESTRICTIVOS/
Agradecimientos:
This study was funded by the Spanish Ministry of Economy and Competitiveness, along with FEDER funding (DIMALIFE Project BIA2017-85098-R).
Tipo: Artículo

References

Spangenberg, J. H., Fuad-Luke, A., & Blincoe, K. (2010). Design for Sustainability (DfS): the interface of sustainable production and consumption. Journal of Cleaner Production, 18(15), 1485-1493. doi:10.1016/j.jclepro.2010.06.002

Gervásio, H., & da Silva, L. S. (2008). Comparative life-cycle analysis of steel-concrete composite bridges. Structure and Infrastructure Engineering, 4(4), 251-269. doi:10.1080/15732470600627325

Musa, Y. I., & Diaz, M. A. (2007). Design Optimization of Composite Steel Box Girder in Flexure. Practice Periodical on Structural Design and Construction, 12(3), 146-152. doi:10.1061/(asce)1084-0680(2007)12:3(146) [+]
Spangenberg, J. H., Fuad-Luke, A., & Blincoe, K. (2010). Design for Sustainability (DfS): the interface of sustainable production and consumption. Journal of Cleaner Production, 18(15), 1485-1493. doi:10.1016/j.jclepro.2010.06.002

Gervásio, H., & da Silva, L. S. (2008). Comparative life-cycle analysis of steel-concrete composite bridges. Structure and Infrastructure Engineering, 4(4), 251-269. doi:10.1080/15732470600627325

Musa, Y. I., & Diaz, M. A. (2007). Design Optimization of Composite Steel Box Girder in Flexure. Practice Periodical on Structural Design and Construction, 12(3), 146-152. doi:10.1061/(asce)1084-0680(2007)12:3(146)

Penadés-Plà, V., García-Segura, T., Martí, J., & Yepes, V. (2016). A Review of Multi-Criteria Decision-Making Methods Applied to the Sustainable Bridge Design. Sustainability, 8(12), 1295. doi:10.3390/su8121295

Nakamura, S., Momiyama, Y., Hosaka, T., & Homma, K. (2002). New technologies of steel/concrete composite bridges. Journal of Constructional Steel Research, 58(1), 99-130. doi:10.1016/s0143-974x(01)00030-x

Kim, H.-Y., & Jeong, Y.-J. (2009). Steel–concrete composite bridge deck slab with profiled sheeting. Journal of Constructional Steel Research, 65(8-9), 1751-1762. doi:10.1016/j.jcsr.2009.04.016

Xie, Y., Yang, H., Zuo, Z., & Gao, Z. (2019). Optimal Depth-to-Span Ratio for Composite Rigid-Frame Bridges. Practice Periodical on Structural Design and Construction, 24(2), 05019001. doi:10.1061/(asce)sc.1943-5576.0000419

Kim, H.-Y., & Jeong, Y.-J. (2010). Ultimate strength of a steel–concrete composite bridge deck slab with profiled sheeting. Engineering Structures, 32(2), 534-546. doi:10.1016/j.engstruct.2009.10.014

Vasseghi, A. (2009). Improving strength and ductility of continuous composite plate girder bridges. Journal of Constructional Steel Research, 65(2), 479-488. doi:10.1016/j.jcsr.2008.05.010

Shao, X., Yi, D., Huang, Z., Zhao, H., Chen, B., & Liu, M. (2013). Basic Performance of the Composite Deck System Composed of Orthotropic Steel Deck and Ultrathin RPC Layer. Journal of Bridge Engineering, 18(5), 417-428. doi:10.1061/(asce)be.1943-5592.0000348

Wu, L., Nie, J., Lu, J., Fan, J., & Cai, C. S. (2013). A new type of steel–concrete composite channel girder and its preliminary experimental study. Journal of Constructional Steel Research, 85, 163-177. doi:10.1016/j.jcsr.2013.03.005

Nie, J.-G., Zhu, Y.-J., Tao, M.-X., Guo, C.-R., & Li, Y.-X. (2017). Optimized Prestressed Continuous Composite Girder Bridges with Corrugated Steel Webs. Journal of Bridge Engineering, 22(2), 04016121. doi:10.1061/(asce)be.1943-5592.0000995

Esteves, P. M., Almeida, J. F., & Oliveira Pedro, J. J. (2018). Steel–concrete hybrid bridge decks: rational design models for connection regions. Proceedings of the Institution of Civil Engineers - Bridge Engineering, 171(4), 252-266. doi:10.1680/jbren.16.00014

Peng-zhen, L., Lin-feng Cheng, Yang, L., Zheng-lun, L., & Hua, S. (2017). Study on Mechanical Behavior of Negative Bending Region Based Design of Composite Bridge Deck. International Journal of Civil Engineering, 16(5), 489-497. doi:10.1007/s40999-017-0156-0

Xie, Y., Yang, H., Zuo, Z., Sirotiak, T. L., & Yang, M. (2018). Optimal Steel Section Length of the Composite Rigid-Frame Bridge. Practice Periodical on Structural Design and Construction, 23(3), 05018001. doi:10.1061/(asce)sc.1943-5576.0000376

Kodur, V., Aziz, E., & Dwaikat, M. (2013). Evaluating Fire Resistance of Steel Girders in Bridges. Journal of Bridge Engineering, 18(7), 633-643. doi:10.1061/(asce)be.1943-5592.0000412

Alos-Moya, J., Paya-Zaforteza, I., Garlock, M. E. M., Loma-Ossorio, E., Schiffner, D., & Hospitaler, A. (2014). Analysis of a bridge failure due to fire using computational fluid dynamics and finite element models. Engineering Structures, 68, 96-110. doi:10.1016/j.engstruct.2014.02.022

Aziz, E. M., Kodur, V. K., Glassman, J. D., & Moreyra Garlock, M. E. (2015). Behavior of steel bridge girders under fire conditions. Journal of Constructional Steel Research, 106, 11-22. doi:10.1016/j.jcsr.2014.12.001

Alos-Moya, J., Paya-Zaforteza, I., Hospitaler, A., & Rinaudo, P. (2017). Valencia bridge fire tests: Experimental study of a composite bridge under fire. Journal of Constructional Steel Research, 138, 538-554. doi:10.1016/j.jcsr.2017.08.008

Hu, J., Usmani, A., Sanad, A., & Carvel, R. (2018). Fire resistance of composite steel & concrete highway bridges. Journal of Constructional Steel Research, 148, 707-719. doi:10.1016/j.jcsr.2018.06.021

Astaneh-Asl, A., & Black, R. G. (2001). Seismic and Structural Engineering of a Curved Cable-Stayed Bridge. Journal of Bridge Engineering, 6(6), 439-450. doi:10.1061/(asce)1084-0702(2001)6:6(439)

Maleki, S. (2006). Seismic energy dissipation with shear connectors for bridges. Engineering Structures, 28(1), 134-142. doi:10.1016/j.engstruct.2005.07.008

Tubaldi, E., Barbato, M., & Dall’Asta, A. (2010). Transverse seismic response of continuous steel-concrete composite bridges exhibiting dual load path. Earthquakes and Structures, 1(1), 21-41. doi:10.12989/eas.2010.1.1.021

Seo, J., & Linzell, D. G. (2012). Horizontally curved steel bridge seismic vulnerability assessment. Engineering Structures, 34, 21-32. doi:10.1016/j.engstruct.2011.09.008

Tubaldi, E., Barbato, M., & Dall’Asta, A. (2012). Influence of Model Parameter Uncertainty on Seismic Transverse Response and Vulnerability of Steel–Concrete Composite Bridges with Dual Load Path. Journal of Structural Engineering, 138(3), 363-374. doi:10.1061/(asce)st.1943-541x.0000456

Tubaldi, E., Dall’Asta, A., & Dezi, L. (2013). Reduced formulation for post-elastic seismic response of dual load path bridges. Engineering Structures, 51, 178-187. doi:10.1016/j.engstruct.2013.01.014

Du, G.-F., Bie, X.-M., Li, Z., & Guan, W.-Q. (2018). Study on constitutive model of shear performance in panel zone of connections composed of CFSSTCs and steel-concrete composite beams with external diaphragms. Engineering Structures, 155, 178-191. doi:10.1016/j.engstruct.2017.11.024

Carbonari, S., Gara, F., Dall’Asta, A., & Dezi, L. (2018). Shear Connection Local Problems in the Seismic Design of Steel-Concrete Composite Decks. Proceedings of Italian Concrete Days 2016, 341-354. doi:10.1007/978-3-319-78936-1_25

Abbiati, G., Cazzador, E., Alessandri, S., Bursi, O. S., Paolacci, F., & De Santis, S. (2018). Experimental characterization and component-based modeling of deck-to-pier connections for composite bridges. Journal of Constructional Steel Research, 150, 31-50. doi:10.1016/j.jcsr.2018.08.005

Ahn, J.-H., Sim, C., Jeong, Y.-J., & Kim, S.-H. (2009). Fatigue behavior and statistical evaluation of the stress category for a steel–concrete composite bridge deck. Journal of Constructional Steel Research, 65(2), 373-385. doi:10.1016/j.jcsr.2008.04.007

Leitão, F. N., da Silva, J. G. S., da S. Vellasco, P. C. G., de Andrade, S. A. L., & de Lima, L. R. O. (2011). Composite (steel–concrete) highway bridge fatigue assessment. Journal of Constructional Steel Research, 67(1), 14-24. doi:10.1016/j.jcsr.2010.07.013

Xu, J., Sun, H., Cai, S., Sun, W., & Zhang, B. (2019). Fatigue testing and analysis of I-girders with trapezoidal corrugated webs. Engineering Structures, 196, 109344. doi:10.1016/j.engstruct.2019.109344

Deng, L., Yan, W., & Li, S. (2019). Computer Modeling and Weight Limit Analysis for Bridge Structure Fatigue Using OpenSEES. Journal of Bridge Engineering, 24(8), 04019081. doi:10.1061/(asce)be.1943-5592.0001459

Deng, L., & Yan, W. (2018). Vehicle Weight Limits and Overload Permit Checking Considering the Cumulative Fatigue Damage of Bridges. Journal of Bridge Engineering, 23(7), 04018045. doi:10.1061/(asce)be.1943-5592.0001267

Zhang, S., Shao, X., Cao, J., Cui, J., Hu, J., & Deng, L. (2016). Fatigue Performance of a Lightweight Composite Bridge Deck with Open Ribs. Journal of Bridge Engineering, 21(7), 04016039. doi:10.1061/(asce)be.1943-5592.0000905

Xu, C., Su, Q., & Sugiura, K. (2017). Mechanism study on the low cycle fatigue behavior of group studs shear connectors in steel-concrete composite bridges. Journal of Constructional Steel Research, 138, 196-207. doi:10.1016/j.jcsr.2017.07.006

Wei, X., Xiao, L., & Pei, S. (2017). Experiment study on fatigue performance of perforated shear connectors. International Journal of Steel Structures, 17(3), 957-967. doi:10.1007/s13296-017-9008-7

Alencar, G., de Jesus, A. M. P., Calçada, R. A. B., & Silva, J. G. S. da. (2018). Fatigue life evaluation of a composite steel-concrete roadway bridge through the hot-spot stress method considering progressive pavement deterioration. Engineering Structures, 166, 46-61. doi:10.1016/j.engstruct.2018.02.058

Ovuoba, B., & Prinz, G. S. (2018). Investigation of residual fatigue life in shear studs of existing composite bridge girders following decades of traffic loading. Engineering Structures, 161, 134-145. doi:10.1016/j.engstruct.2018.02.018

Xu, C., Sugiura, K., & Su, Q. (2018). Fatigue Behavior of the Group Stud Shear Connectors in Steel-Concrete Composite Bridges. Journal of Bridge Engineering, 23(8), 04018055. doi:10.1061/(asce)be.1943-5592.0001261

Yuan, S., Dong, J., Wang, Q., & Ooi, J. Y. (2018). RETRACTED: Fatigue property study and life assessment of composite girders with two corrugated steel webs. Journal of Constructional Steel Research, 141, 287-295. doi:10.1016/j.jcsr.2017.11.022

Zhu, Z., Yuan, T., Xiang, Z., Huang, Y., Zhou, Y. E., & Shao, X. (2018). Behavior and Fatigue Performance of Details in an Orthotropic Steel Bridge with UHPC-Deck Plate Composite System under In-Service Traffic Flows. Journal of Bridge Engineering, 23(3), 04017142. doi:10.1061/(asce)be.1943-5592.0001167

Arici, M., Granata, M. F., & Oliva, M. (2015). Influence of secondary torsion on curved steel girder bridges with box and I-girder cross-sections. KSCE Journal of Civil Engineering, 19(7), 2157-2171. doi:10.1007/s12205-015-1373-1

Camara, A., & Ruiz-Teran, A. M. (2015). Multi-mode traffic-induced vibrations in composite ladder-deck bridges under heavy moving vehicles. Journal of Sound and Vibration, 355, 264-283. doi:10.1016/j.jsv.2015.06.026

Sadeghi, F., Kueh, A., Bagheri Fard, A., & Aghili, N. (2013). Vibration Characteristics of Composite Footbridges under Various Human Running Loads. ISRN Civil Engineering, 2013, 1-8. doi:10.1155/2013/817384

Podworna, M., & Klasztorny, M. (2014). Vertical vibrations of composite bridge/track structure/high-speed train systems. Part 2: Physical and mathematical modelling. Bulletin of the Polish Academy of Sciences: Technical Sciences, 62(1), 181-196. doi:10.2478/bpasts-2014-0019

Podworna, M., & Klasztorny, M. (2014). Vertical vibrations of composite bridge/track structure/high-speed train systems. Part 1: Series-of-types of steel-concrete bridges. Bulletin of the Polish Academy of Sciences: Technical Sciences, 62(1), 165-179. doi:10.2478/bpasts-2014-0018

Podworna, M., & Klasztorny, M. (2014). Vertical vibrations of composite bridge/track structure/high-speed train systems. Part 3: Deterministic and random vibrations of exemplary system. Bulletin of the Polish Academy of Sciences Technical Sciences, 62(2), 305-320. doi:10.2478/bpasts-2014-0030

Sadeghi, F., & Hong Kueh, A. B. (2015). Serviceability Assessment of Composite Footbridge Under Human Walking and Running Loads. Jurnal Teknologi, 74(4). doi:10.11113/jt.v74.4612

Li, Y., & He, S. (2018). Research of Steel-Concrete Composite Bridge under Blasting Loads. Advances in Civil Engineering, 2018, 1-9. doi:10.1155/2018/5748278

Yarnold, M., Golecki, T., & Weidner, J. (2018). Identification of Composite Action Through Truck Load Testing. Frontiers in Built Environment, 4. doi:10.3389/fbuil.2018.00074

Li, Z., Ma, X., Fan, J., & Nie, X. (2019). Overhanging Tests of Steel–Concrete Composite Girders with Different Connectors. Journal of Bridge Engineering, 24(11), 04019098. doi:10.1061/(asce)be.1943-5592.0001481

Sofi, F. A., & Steelman, J. S. (2019). Nonlinear flexural distribution behavior and ultimate system capacity of skewed steel girder bridges. Engineering Structures, 197, 109392. doi:10.1016/j.engstruct.2019.109392

Gheitasi, A., & Harris, D. K. (2015). Overload Flexural Distribution Behavior of Composite Steel Girder Bridges. Journal of Bridge Engineering, 20(5), 04014076. doi:10.1061/(asce)be.1943-5592.0000671

Gheitasi, A., & Harris, D. K. (2015). Failure Characteristics and Ultimate Load-Carrying Capacity of Redundant Composite Steel Girder Bridges: Case Study. Journal of Bridge Engineering, 20(3), 05014012. doi:10.1061/(asce)be.1943-5592.0000667

Saraf, V., & Nowak, A. S. (1998). Proof Load Testing of Deteriorated Steel Girder Bridges. Journal of Bridge Engineering, 3(2), 82-89. doi:10.1061/(asce)1084-0702(1998)3:2(82)

Su, Q., Dai, C., & Xu, C. (2018). Full-Scale Experimental Study on the Negative Flexural Behavior of Orthotropic Steel–Concrete Composite Bridge Deck. Journal of Bridge Engineering, 23(12), 04018097. doi:10.1061/(asce)be.1943-5592.0001320

Zona, A., Barbato, M., Dall’Asta, A., & Dezi, L. (2010). Probabilistic analysis for design assessment of continuous steel–concrete composite girders. Journal of Constructional Steel Research, 66(7), 897-905. doi:10.1016/j.jcsr.2010.01.015

Gara, F., Ranzi, G., & Leoni, G. (2011). Simplified method of analysis accounting for shear-lag effects in composite bridge decks. Journal of Constructional Steel Research, 67(10), 1684-1697. doi:10.1016/j.jcsr.2011.04.013

Nie, J.-G., & Zhu, L. (2014). Beam-Truss Model of Steel-Concrete Composite Box-Girder Bridges. Journal of Bridge Engineering, 19(7), 04014023. doi:10.1061/(asce)be.1943-5592.0000592

Deng, Y., Phares, B. M., & Steffens, O. W. (2016). Experimental and numerical evaluation of a folded plate girder system for short-span bridges – A case study. Engineering Structures, 113, 26-40. doi:10.1016/j.engstruct.2016.01.027

Jia, B., Yu, X., Yan, Q., & Yang, Z. (2016). Study on the System Reliability of Steel-Concrete Composite Beam Cable-stayed Bridge. The Open Civil Engineering Journal, 10(1), 418-432. doi:10.2174/1874149501609010194

Tong, T., Yu, Q., & Su, Q. (2018). Coupled Effects of Concrete Shrinkage, Creep, and Cracking on the Performance of Postconnected Prestressed Steel-Concrete Composite Girders. Journal of Bridge Engineering, 23(3), 04017145. doi:10.1061/(asce)be.1943-5592.0001192

Harris, D. K. (2010). Assessment of flexural lateral load distribution methodologies for stringer bridges. Engineering Structures, 32(11), 3443-3451. doi:10.1016/j.engstruct.2010.06.008

Harris, D. K., & Gheitasi, A. (2013). Implementation of an energy-based stiffened plate formulation for lateral load distribution characteristics of girder-type bridges. Engineering Structures, 54, 168-179. doi:10.1016/j.engstruct.2013.04.002

Zhang, Y., & Der Kiureghian, A. (1993). Dynamic response sensitivity of inelastic structures. Computer Methods in Applied Mechanics and Engineering, 108(1-2), 23-36. doi:10.1016/0045-7825(93)90151-m

Conte, J. P., Vijalapura, P. K., & Meghella, M. (2003). Consistent Finite-Element Response Sensitivity Analysis. Journal of Engineering Mechanics, 129(12), 1380-1393. doi:10.1061/(asce)0733-9399(2003)129:12(1380)

Martí, J. V., García-Segura, T., & Yepes, V. (2016). Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy. Journal of Cleaner Production, 120, 231-240. doi:10.1016/j.jclepro.2016.02.024

Yepes, V., Martí, J. V., García-Segura, T., & González-Vidosa, F. (2017). Heuristics in optimal detailed design of precast road bridges. Archives of Civil and Mechanical Engineering, 17(4), 738-749. doi:10.1016/j.acme.2017.02.006

Penadés-Plà, V., García-Segura, T., Martí, J., & Yepes, V. (2018). An Optimization-LCA of a Prestressed Concrete Precast Bridge. Sustainability, 10(3), 685. doi:10.3390/su10030685

Yepes, V., Dasí-Gil, M., Martínez-Muñoz, D., López-Desfilis, V. J., & Martí, J. V. (2019). Heuristic Techniques for the Design of Steel-Concrete Composite Pedestrian Bridges. Applied Sciences, 9(16), 3253. doi:10.3390/app9163253

Batikha, M., Al Ani, O., & Elhag, T. (2017). The effect of span length and girder type on bridge costs. MATEC Web of Conferences, 120, 08009. doi:10.1051/matecconf/201712008009

SURTEES, J., & TORDOFF, D. (1977). OPTIMUM DESIGN OF COMPOSITE BOX GIRDER BRIDGE STRUCTURES. Proceedings of the Institution of Civil Engineers, 63(1), 181-198. doi:10.1680/iicep.1977.3300

Briseghella, B., Fenu, L., Lan, C., Mazzarolo, E., & Zordan, T. (2013). Application of Topological Optimization to Bridge Design. Journal of Bridge Engineering, 18(8), 790-800. doi:10.1061/(asce)be.1943-5592.0000416

Bendsøe, M. P. (1989). Optimal shape design as a material distribution problem. Structural Optimization, 1(4), 193-202. doi:10.1007/bf01650949

Bendsøe, M. P., & Kikuchi, N. (1988). Generating optimal topologies in structural design using a homogenization method. Computer Methods in Applied Mechanics and Engineering, 71(2), 197-224. doi:10.1016/0045-7825(88)90086-2

Sigmund, O. (2001). A 99 line topology optimization code written in Matlab. Structural and Multidisciplinary Optimization, 21(2), 120-127. doi:10.1007/s001580050176

Edwards, C. S., Kim, H. A., & Budd, C. J. (2007). An evaluative study on ESO and SIMP for optimising a cantilever tie—beam. Structural and Multidisciplinary Optimization, 34(5), 403-414. doi:10.1007/s00158-007-0102-x

Xie, Y. M., & Steven, G. P. (1993). A simple evolutionary procedure for structural optimization. Computers & Structures, 49(5), 885-896. doi:10.1016/0045-7949(93)90035-c

Pedro, R. L., Demarche, J., Miguel, L. F. F., & Lopez, R. H. (2017). An efficient approach for the optimization of simply supported steel-concrete composite I-girder bridges. Advances in Engineering Software, 112, 31-45. doi:10.1016/j.advengsoft.2017.06.009

Lv, N., & Fan, L. (2014). Optimization of Quickly Assembled Steel-Concrete Composite Bridge Used in Temporary. Modern Applied Science, 8(4). doi:10.5539/mas.v8n4p134

Orcesi, A., Cremona, C., & Ta, B. (2018). Optimization of Design and Life-Cycle Management for Steel–Concrete Composite Bridges. Structural Engineering International, 28(2), 185-195. doi:10.1080/10168664.2018.1453763

Rempling, R., Mathern, A., Tarazona Ramos, D., & Luis Fernández, S. (2019). Automatic structural design by a set-based parametric design method. Automation in Construction, 108, 102936. doi:10.1016/j.autcon.2019.102936

Nahm, Y.-E., & Ishikawa, H. (2006). A new 3D-CAD system for set-based parametric design. The International Journal of Advanced Manufacturing Technology, 29(1-2), 137-150. doi:10.1007/s00170-004-2213-5

The second Toyota paradox: How delaying decisions can make better cars faster. (1995). Long Range Planning, 28(4), 129. doi:10.1016/0024-6301(95)94310-u

Kaveh, A., Bakhshpoori, T., & Barkhori, M. (2014). Optimum design of multi-span composite box girder bridges using Cuckoo Search algorithm. Steel and Composite Structures, 17(5), 705-719. doi:10.12989/scs.2014.17.5.705

Kaveh, A., & Zarandi, M. M. M. (2018). Optimal Design of Steel-Concrete Composite I-girder Bridges Using Three Meta-Heuristic Algorithms. Periodica Polytechnica Civil Engineering. doi:10.3311/ppci.12769

Kaveh, A., & Mahdavi, V. R. (2014). Colliding bodies optimization: A novel meta-heuristic method. Computers & Structures, 139, 18-27. doi:10.1016/j.compstruc.2014.04.005

Kaveh, A., & Ilchi Ghazaan, M. (2014). Enhanced colliding bodies optimization for design problems with continuous and discrete variables. Advances in Engineering Software, 77, 66-75. doi:10.1016/j.advengsoft.2014.08.003

Kaveh, A., Kaveh, A., & Ilchi Ghazaan, M. (2017). A new meta-heuristic algorithm: vibrating particles system. Scientia Iranica, 24(2), 551-566. doi:10.24200/sci.2017.2417

Civicioglu, P. (2013). Backtracking Search Optimization Algorithm for numerical optimization problems. Applied Mathematics and Computation, 219(15), 8121-8144. doi:10.1016/j.amc.2013.02.017

Firefly Algorithm. (2010). Engineering Optimization, 221-230. doi:10.1002/9780470640425.ch17

Gonçalves, M. S., Lopez, R. H., & Miguel, L. F. F. (2015). Search group algorithm: A new metaheuristic method for the optimization of truss structures. Computers & Structures, 153, 165-184. doi:10.1016/j.compstruc.2015.03.003

García-Segura, T., Penadés-Plà, V., & Yepes, V. (2018). Sustainable bridge design by metamodel-assisted multi-objective optimization and decision-making under uncertainty. Journal of Cleaner Production, 202, 904-915. doi:10.1016/j.jclepro.2018.08.177

Yepes, V., García-Segura, T., & Moreno-Jiménez, J. M. (2015). A cognitive approach for the multi-objective optimization of RC structural problems. Archives of Civil and Mechanical Engineering, 15(4), 1024-1036. doi:10.1016/j.acme.2015.05.001

Penadés-Plà, V., García-Segura, T., & Yepes, V. (2019). Accelerated optimization method for low-embodied energy concrete box-girder bridge design. Engineering Structures, 179, 556-565. doi:10.1016/j.engstruct.2018.11.015

Arnold, F., & Sörensen, K. (2019). What makes a VRP solution good? The generation of problem-specific knowledge for heuristics. Computers & Operations Research, 106, 280-288. doi:10.1016/j.cor.2018.02.007

Marí, A., Mirambell, E., & Estrada, I. (2003). Effects of construction process and slab prestressing on the serviceability behaviour of composite bridges. Journal of Constructional Steel Research, 59(2), 135-163. doi:10.1016/s0143-974x(02)00029-9

Jung, K., Kim, K., Sim, C., & Kim, J. J. (2011). Verification of Incremental Launching Construction Safety for the Ilsun Bridge, the World’s Longest and Widest Prestressed Concrete Box Girder with Corrugated Steel Web Section. Journal of Bridge Engineering, 16(3), 453-460. doi:10.1061/(asce)be.1943-5592.0000165

Hällmark, R., White, H., & Collin, P. (2012). Prefabricated Bridge Construction across Europe and America. Practice Periodical on Structural Design and Construction, 17(3), 82-92. doi:10.1061/(asce)sc.1943-5576.0000116

Valipour, H., Rajabi, A., Foster, S. J., & Bradford, M. A. (2015). Arching behaviour of precast concrete slabs in a deconstructable composite bridge deck. Construction and Building Materials, 87, 67-77. doi:10.1016/j.conbuildmat.2015.04.006

Navarro, I. J., Martí, J. V., & Yepes, V. (2019). Reliability-based maintenance optimization of corrosion preventive designs under a life cycle perspective. Environmental Impact Assessment Review, 74, 23-34. doi:10.1016/j.eiar.2018.10.001

Albrecht, P., & Lenwari, A. (2008). Fatigue Strength of Repaired Prestressed Composite Beams. Journal of Bridge Engineering, 13(4), 409-417. doi:10.1061/(asce)1084-0702(2008)13:4(409)

SUGIMOTO, I., YOSHIDA, Y., & TANIKAGA, A. (2013). Development of Composite Steel Girder and Concrete Slab Method for Renovation of Existing Steel Railway Bridges. Quarterly Report of RTRI, 54(1), 8-11. doi:10.2219/rtriqr.54.8

Gheitasi, A., & Harris, D. K. (2015). Performance assessment of steel–concrete composite bridges with subsurface deck deterioration. Structures, 2, 8-20. doi:10.1016/j.istruc.2014.12.001

Gheitasi, A., & Harris, D. K. (2016). Redundancy and Operational Safety of Composite Stringer Bridges with Deteriorated Girders. Journal of Performance of Constructed Facilities, 30(2), 04015022. doi:10.1061/(asce)cf.1943-5509.0000764

Matos, J. C., Moreira, V. N., Valente, I. B., Cruz, P. J. S., Neves, L. C., & Galvão, N. (2019). Probabilistic-based assessment of existing steel-concrete composite bridges – Application to Sousa River Bridge. Engineering Structures, 181, 95-110. doi:10.1016/j.engstruct.2018.12.006

Jacinto, L., Neves, L. C., & Santos, L. O. (2015). Bayesian assessment of an existing bridge: a case study. Structure and Infrastructure Engineering, 12(1), 61-77. doi:10.1080/15732479.2014.995105

Widman, J. (1998). Environmental impact assessment of steel bridges. Journal of Constructional Steel Research, 46(1-3), 291-293. doi:10.1016/s0143-974x(98)80031-x

Du, G., & Karoumi, R. (2013). Life cycle assessment of a railway bridge: comparison of two superstructure designs. Structure and Infrastructure Engineering, 9(11), 1149-1160. doi:10.1080/15732479.2012.670250

Milani, C. J., & Kripka, M. (2019). Evaluation of short span bridge projects with a focus on sustainability. Structure and Infrastructure Engineering, 16(2), 367-380. doi:10.1080/15732479.2019.1662815

Lippiatt, B. C. (1999). Selecting Cost-Effective Green Building Products: BEES Approach. Journal of Construction Engineering and Management, 125(6), 448-455. doi:10.1061/(asce)0733-9364(1999)125:6(448)

Rosén, L., Back, P.-E., Söderqvist, T., Norrman, J., Brinkhoff, P., Norberg, T., … Döberl, G. (2015). SCORE: A novel multi-criteria decision analysis approach to assessing the sustainability of contaminated land remediation. Science of The Total Environment, 511, 621-638. doi:10.1016/j.scitotenv.2014.12.058

Sebastian, R., Claeson-Jonsson, C., & Di Giulio, R. (2013). Performance-based procurement for low-disturbance bridge construction projects. Construction Innovation, 13(4), 394-409. doi:10.1108/ci-06-2012-0033

Saaty, R. W. (1987). The analytic hierarchy process—what it is and how it is used. Mathematical Modelling, 9(3-5), 161-176. doi:10.1016/0270-0255(87)90473-8

Opricovic, S., & Tzeng, G.-H. (2004). Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. European Journal of Operational Research, 156(2), 445-455. doi:10.1016/s0377-2217(03)00020-1

Penadés-Plà, V., Yepes, V., & García-Segura, T. (2020). Robust decision-making design for sustainable pedestrian concrete bridges. Engineering Structures, 209, 109968. doi:10.1016/j.engstruct.2019.109968

Penadés-Plà, V., García-Segura, T., & Yepes, V. (2020). Robust Design Optimization for Low-Cost Concrete Box-Girder Bridge. Mathematics, 8(3), 398. doi:10.3390/math8030398

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem