- -

Steel-Concrete Composite Bridges: Design, Life Cycle Assessment, Maintenance, and Decision-Making

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Steel-Concrete Composite Bridges: Design, Life Cycle Assessment, Maintenance, and Decision-Making

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Martínez-Muñoz, D. es_ES
dc.contributor.author Martí Albiñana, José Vicente es_ES
dc.contributor.author Yepes, V. es_ES
dc.date.accessioned 2021-02-09T04:32:13Z
dc.date.available 2021-02-09T04:32:13Z
dc.date.issued 2020-05-28 es_ES
dc.identifier.issn 1687-8086 es_ES
dc.identifier.uri http://hdl.handle.net/10251/160905
dc.description.abstract [EN] Steel-concrete composite bridges are used as an alternative to concrete bridges because of their ability to adapt their geometry to design constraints and the possibility of reusing some of the materials in the structure. In this review, we report the research carried out on the design, behavior, optimization, construction processes, maintenance, impact assessment, and decision-making techniques of composite bridges in order to arrive at a complete design approach. In addition to a qualitative analysis, a multivariate analysis is used to identify knowledge gaps related to bridge design and to detect trends in research. An additional objective is to make visible the gaps in the sustainable design of composite steel-concrete bridges, which allows us to focus on future research studies. *eresults of this work show how researchers have concentrated their studies on the preliminary design of bridges with a mainly economic approach, while at a global level, concern is directed towards the search for sustainable solutions. It is found that life cycle impact assessment and decision-making strategies allow bridge managers to improve decision-making, particularly at the end of the life cycle of composite bridges. es_ES
dc.description.sponsorship This study was funded by the Spanish Ministry of Economy and Competitiveness, along with FEDER funding (DIMALIFE Project BIA2017-85098-R). es_ES
dc.language Inglés es_ES
dc.publisher Hindawi Limited es_ES
dc.relation.ispartof Advances in Civil Engineering es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Composite bridges es_ES
dc.subject Life cycle assessment es_ES
dc.subject Maintenance es_ES
dc.subject Decision making es_ES
dc.subject.classification INGENIERIA DE LA CONSTRUCCION es_ES
dc.title Steel-Concrete Composite Bridges: Design, Life Cycle Assessment, Maintenance, and Decision-Making es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1155/2020/8823370 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIA2017-85098-R/ES/DISEÑO Y MANTENIMIENTO OPTIMO ROBUSTO Y BASADO EN FIABILIDAD DE PUENTES E INFRAESTRUCTURAS VIARIAS DE ALTA EFICIENCIA SOCIAL Y MEDIOAMBIENTAL BAJO PRESUPUESTOS RESTRICTIVOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil es_ES
dc.description.bibliographicCitation Martínez-Muñoz, D.; Martí Albiñana, JV.; Yepes, V. (2020). Steel-Concrete Composite Bridges: Design, Life Cycle Assessment, Maintenance, and Decision-Making. Advances in Civil Engineering. 2020:1-13. https://doi.org/10.1155/2020/8823370 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1155/2020/8823370 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 2020 es_ES
dc.relation.pasarela S\413519 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Spangenberg, J. H., Fuad-Luke, A., & Blincoe, K. (2010). Design for Sustainability (DfS): the interface of sustainable production and consumption. Journal of Cleaner Production, 18(15), 1485-1493. doi:10.1016/j.jclepro.2010.06.002 es_ES
dc.description.references Gervásio, H., & da Silva, L. S. (2008). Comparative life-cycle analysis of steel-concrete composite bridges. Structure and Infrastructure Engineering, 4(4), 251-269. doi:10.1080/15732470600627325 es_ES
dc.description.references Musa, Y. I., & Diaz, M. A. (2007). Design Optimization of Composite Steel Box Girder in Flexure. Practice Periodical on Structural Design and Construction, 12(3), 146-152. doi:10.1061/(asce)1084-0680(2007)12:3(146) es_ES
dc.description.references Penadés-Plà, V., García-Segura, T., Martí, J., & Yepes, V. (2016). A Review of Multi-Criteria Decision-Making Methods Applied to the Sustainable Bridge Design. Sustainability, 8(12), 1295. doi:10.3390/su8121295 es_ES
dc.description.references Nakamura, S., Momiyama, Y., Hosaka, T., & Homma, K. (2002). New technologies of steel/concrete composite bridges. Journal of Constructional Steel Research, 58(1), 99-130. doi:10.1016/s0143-974x(01)00030-x es_ES
dc.description.references Kim, H.-Y., & Jeong, Y.-J. (2009). Steel–concrete composite bridge deck slab with profiled sheeting. Journal of Constructional Steel Research, 65(8-9), 1751-1762. doi:10.1016/j.jcsr.2009.04.016 es_ES
dc.description.references Xie, Y., Yang, H., Zuo, Z., & Gao, Z. (2019). Optimal Depth-to-Span Ratio for Composite Rigid-Frame Bridges. Practice Periodical on Structural Design and Construction, 24(2), 05019001. doi:10.1061/(asce)sc.1943-5576.0000419 es_ES
dc.description.references Kim, H.-Y., & Jeong, Y.-J. (2010). Ultimate strength of a steel–concrete composite bridge deck slab with profiled sheeting. Engineering Structures, 32(2), 534-546. doi:10.1016/j.engstruct.2009.10.014 es_ES
dc.description.references Vasseghi, A. (2009). Improving strength and ductility of continuous composite plate girder bridges. Journal of Constructional Steel Research, 65(2), 479-488. doi:10.1016/j.jcsr.2008.05.010 es_ES
dc.description.references Shao, X., Yi, D., Huang, Z., Zhao, H., Chen, B., & Liu, M. (2013). Basic Performance of the Composite Deck System Composed of Orthotropic Steel Deck and Ultrathin RPC Layer. Journal of Bridge Engineering, 18(5), 417-428. doi:10.1061/(asce)be.1943-5592.0000348 es_ES
dc.description.references Wu, L., Nie, J., Lu, J., Fan, J., & Cai, C. S. (2013). A new type of steel–concrete composite channel girder and its preliminary experimental study. Journal of Constructional Steel Research, 85, 163-177. doi:10.1016/j.jcsr.2013.03.005 es_ES
dc.description.references Nie, J.-G., Zhu, Y.-J., Tao, M.-X., Guo, C.-R., & Li, Y.-X. (2017). Optimized Prestressed Continuous Composite Girder Bridges with Corrugated Steel Webs. Journal of Bridge Engineering, 22(2), 04016121. doi:10.1061/(asce)be.1943-5592.0000995 es_ES
dc.description.references Esteves, P. M., Almeida, J. F., & Oliveira Pedro, J. J. (2018). Steel–concrete hybrid bridge decks: rational design models for connection regions. Proceedings of the Institution of Civil Engineers - Bridge Engineering, 171(4), 252-266. doi:10.1680/jbren.16.00014 es_ES
dc.description.references Peng-zhen, L., Lin-feng Cheng, Yang, L., Zheng-lun, L., & Hua, S. (2017). Study on Mechanical Behavior of Negative Bending Region Based Design of Composite Bridge Deck. International Journal of Civil Engineering, 16(5), 489-497. doi:10.1007/s40999-017-0156-0 es_ES
dc.description.references Xie, Y., Yang, H., Zuo, Z., Sirotiak, T. L., & Yang, M. (2018). Optimal Steel Section Length of the Composite Rigid-Frame Bridge. Practice Periodical on Structural Design and Construction, 23(3), 05018001. doi:10.1061/(asce)sc.1943-5576.0000376 es_ES
dc.description.references Kodur, V., Aziz, E., & Dwaikat, M. (2013). Evaluating Fire Resistance of Steel Girders in Bridges. Journal of Bridge Engineering, 18(7), 633-643. doi:10.1061/(asce)be.1943-5592.0000412 es_ES
dc.description.references Alos-Moya, J., Paya-Zaforteza, I., Garlock, M. E. M., Loma-Ossorio, E., Schiffner, D., & Hospitaler, A. (2014). Analysis of a bridge failure due to fire using computational fluid dynamics and finite element models. Engineering Structures, 68, 96-110. doi:10.1016/j.engstruct.2014.02.022 es_ES
dc.description.references Aziz, E. M., Kodur, V. K., Glassman, J. D., & Moreyra Garlock, M. E. (2015). Behavior of steel bridge girders under fire conditions. Journal of Constructional Steel Research, 106, 11-22. doi:10.1016/j.jcsr.2014.12.001 es_ES
dc.description.references Alos-Moya, J., Paya-Zaforteza, I., Hospitaler, A., & Rinaudo, P. (2017). Valencia bridge fire tests: Experimental study of a composite bridge under fire. Journal of Constructional Steel Research, 138, 538-554. doi:10.1016/j.jcsr.2017.08.008 es_ES
dc.description.references Hu, J., Usmani, A., Sanad, A., & Carvel, R. (2018). Fire resistance of composite steel & concrete highway bridges. Journal of Constructional Steel Research, 148, 707-719. doi:10.1016/j.jcsr.2018.06.021 es_ES
dc.description.references Astaneh-Asl, A., & Black, R. G. (2001). Seismic and Structural Engineering of a Curved Cable-Stayed Bridge. Journal of Bridge Engineering, 6(6), 439-450. doi:10.1061/(asce)1084-0702(2001)6:6(439) es_ES
dc.description.references Maleki, S. (2006). Seismic energy dissipation with shear connectors for bridges. Engineering Structures, 28(1), 134-142. doi:10.1016/j.engstruct.2005.07.008 es_ES
dc.description.references Tubaldi, E., Barbato, M., & Dall’Asta, A. (2010). Transverse seismic response of continuous steel-concrete composite bridges exhibiting dual load path. Earthquakes and Structures, 1(1), 21-41. doi:10.12989/eas.2010.1.1.021 es_ES
dc.description.references Seo, J., & Linzell, D. G. (2012). Horizontally curved steel bridge seismic vulnerability assessment. Engineering Structures, 34, 21-32. doi:10.1016/j.engstruct.2011.09.008 es_ES
dc.description.references Tubaldi, E., Barbato, M., & Dall’Asta, A. (2012). Influence of Model Parameter Uncertainty on Seismic Transverse Response and Vulnerability of Steel–Concrete Composite Bridges with Dual Load Path. Journal of Structural Engineering, 138(3), 363-374. doi:10.1061/(asce)st.1943-541x.0000456 es_ES
dc.description.references Tubaldi, E., Dall’Asta, A., & Dezi, L. (2013). Reduced formulation for post-elastic seismic response of dual load path bridges. Engineering Structures, 51, 178-187. doi:10.1016/j.engstruct.2013.01.014 es_ES
dc.description.references Du, G.-F., Bie, X.-M., Li, Z., & Guan, W.-Q. (2018). Study on constitutive model of shear performance in panel zone of connections composed of CFSSTCs and steel-concrete composite beams with external diaphragms. Engineering Structures, 155, 178-191. doi:10.1016/j.engstruct.2017.11.024 es_ES
dc.description.references Carbonari, S., Gara, F., Dall’Asta, A., & Dezi, L. (2018). Shear Connection Local Problems in the Seismic Design of Steel-Concrete Composite Decks. Proceedings of Italian Concrete Days 2016, 341-354. doi:10.1007/978-3-319-78936-1_25 es_ES
dc.description.references Abbiati, G., Cazzador, E., Alessandri, S., Bursi, O. S., Paolacci, F., & De Santis, S. (2018). Experimental characterization and component-based modeling of deck-to-pier connections for composite bridges. Journal of Constructional Steel Research, 150, 31-50. doi:10.1016/j.jcsr.2018.08.005 es_ES
dc.description.references Ahn, J.-H., Sim, C., Jeong, Y.-J., & Kim, S.-H. (2009). Fatigue behavior and statistical evaluation of the stress category for a steel–concrete composite bridge deck. Journal of Constructional Steel Research, 65(2), 373-385. doi:10.1016/j.jcsr.2008.04.007 es_ES
dc.description.references Leitão, F. N., da Silva, J. G. S., da S. Vellasco, P. C. G., de Andrade, S. A. L., & de Lima, L. R. O. (2011). Composite (steel–concrete) highway bridge fatigue assessment. Journal of Constructional Steel Research, 67(1), 14-24. doi:10.1016/j.jcsr.2010.07.013 es_ES
dc.description.references Xu, J., Sun, H., Cai, S., Sun, W., & Zhang, B. (2019). Fatigue testing and analysis of I-girders with trapezoidal corrugated webs. Engineering Structures, 196, 109344. doi:10.1016/j.engstruct.2019.109344 es_ES
dc.description.references Deng, L., Yan, W., & Li, S. (2019). Computer Modeling and Weight Limit Analysis for Bridge Structure Fatigue Using OpenSEES. Journal of Bridge Engineering, 24(8), 04019081. doi:10.1061/(asce)be.1943-5592.0001459 es_ES
dc.description.references Deng, L., & Yan, W. (2018). Vehicle Weight Limits and Overload Permit Checking Considering the Cumulative Fatigue Damage of Bridges. Journal of Bridge Engineering, 23(7), 04018045. doi:10.1061/(asce)be.1943-5592.0001267 es_ES
dc.description.references Zhang, S., Shao, X., Cao, J., Cui, J., Hu, J., & Deng, L. (2016). Fatigue Performance of a Lightweight Composite Bridge Deck with Open Ribs. Journal of Bridge Engineering, 21(7), 04016039. doi:10.1061/(asce)be.1943-5592.0000905 es_ES
dc.description.references Xu, C., Su, Q., & Sugiura, K. (2017). Mechanism study on the low cycle fatigue behavior of group studs shear connectors in steel-concrete composite bridges. Journal of Constructional Steel Research, 138, 196-207. doi:10.1016/j.jcsr.2017.07.006 es_ES
dc.description.references Wei, X., Xiao, L., & Pei, S. (2017). Experiment study on fatigue performance of perforated shear connectors. International Journal of Steel Structures, 17(3), 957-967. doi:10.1007/s13296-017-9008-7 es_ES
dc.description.references Alencar, G., de Jesus, A. M. P., Calçada, R. A. B., & Silva, J. G. S. da. (2018). Fatigue life evaluation of a composite steel-concrete roadway bridge through the hot-spot stress method considering progressive pavement deterioration. Engineering Structures, 166, 46-61. doi:10.1016/j.engstruct.2018.02.058 es_ES
dc.description.references Ovuoba, B., & Prinz, G. S. (2018). Investigation of residual fatigue life in shear studs of existing composite bridge girders following decades of traffic loading. Engineering Structures, 161, 134-145. doi:10.1016/j.engstruct.2018.02.018 es_ES
dc.description.references Xu, C., Sugiura, K., & Su, Q. (2018). Fatigue Behavior of the Group Stud Shear Connectors in Steel-Concrete Composite Bridges. Journal of Bridge Engineering, 23(8), 04018055. doi:10.1061/(asce)be.1943-5592.0001261 es_ES
dc.description.references Yuan, S., Dong, J., Wang, Q., & Ooi, J. Y. (2018). RETRACTED: Fatigue property study and life assessment of composite girders with two corrugated steel webs. Journal of Constructional Steel Research, 141, 287-295. doi:10.1016/j.jcsr.2017.11.022 es_ES
dc.description.references Zhu, Z., Yuan, T., Xiang, Z., Huang, Y., Zhou, Y. E., & Shao, X. (2018). Behavior and Fatigue Performance of Details in an Orthotropic Steel Bridge with UHPC-Deck Plate Composite System under In-Service Traffic Flows. Journal of Bridge Engineering, 23(3), 04017142. doi:10.1061/(asce)be.1943-5592.0001167 es_ES
dc.description.references Arici, M., Granata, M. F., & Oliva, M. (2015). Influence of secondary torsion on curved steel girder bridges with box and I-girder cross-sections. KSCE Journal of Civil Engineering, 19(7), 2157-2171. doi:10.1007/s12205-015-1373-1 es_ES
dc.description.references Camara, A., & Ruiz-Teran, A. M. (2015). Multi-mode traffic-induced vibrations in composite ladder-deck bridges under heavy moving vehicles. Journal of Sound and Vibration, 355, 264-283. doi:10.1016/j.jsv.2015.06.026 es_ES
dc.description.references Sadeghi, F., Kueh, A., Bagheri Fard, A., & Aghili, N. (2013). Vibration Characteristics of Composite Footbridges under Various Human Running Loads. ISRN Civil Engineering, 2013, 1-8. doi:10.1155/2013/817384 es_ES
dc.description.references Podworna, M., & Klasztorny, M. (2014). Vertical vibrations of composite bridge/track structure/high-speed train systems. Part 2: Physical and mathematical modelling. Bulletin of the Polish Academy of Sciences: Technical Sciences, 62(1), 181-196. doi:10.2478/bpasts-2014-0019 es_ES
dc.description.references Podworna, M., & Klasztorny, M. (2014). Vertical vibrations of composite bridge/track structure/high-speed train systems. Part 1: Series-of-types of steel-concrete bridges. Bulletin of the Polish Academy of Sciences: Technical Sciences, 62(1), 165-179. doi:10.2478/bpasts-2014-0018 es_ES
dc.description.references Podworna, M., & Klasztorny, M. (2014). Vertical vibrations of composite bridge/track structure/high-speed train systems. Part 3: Deterministic and random vibrations of exemplary system. Bulletin of the Polish Academy of Sciences Technical Sciences, 62(2), 305-320. doi:10.2478/bpasts-2014-0030 es_ES
dc.description.references Sadeghi, F., & Hong Kueh, A. B. (2015). Serviceability Assessment of Composite Footbridge Under Human Walking and Running Loads. Jurnal Teknologi, 74(4). doi:10.11113/jt.v74.4612 es_ES
dc.description.references Li, Y., & He, S. (2018). Research of Steel-Concrete Composite Bridge under Blasting Loads. Advances in Civil Engineering, 2018, 1-9. doi:10.1155/2018/5748278 es_ES
dc.description.references Yarnold, M., Golecki, T., & Weidner, J. (2018). Identification of Composite Action Through Truck Load Testing. Frontiers in Built Environment, 4. doi:10.3389/fbuil.2018.00074 es_ES
dc.description.references Li, Z., Ma, X., Fan, J., & Nie, X. (2019). Overhanging Tests of Steel–Concrete Composite Girders with Different Connectors. Journal of Bridge Engineering, 24(11), 04019098. doi:10.1061/(asce)be.1943-5592.0001481 es_ES
dc.description.references Sofi, F. A., & Steelman, J. S. (2019). Nonlinear flexural distribution behavior and ultimate system capacity of skewed steel girder bridges. Engineering Structures, 197, 109392. doi:10.1016/j.engstruct.2019.109392 es_ES
dc.description.references Gheitasi, A., & Harris, D. K. (2015). Overload Flexural Distribution Behavior of Composite Steel Girder Bridges. Journal of Bridge Engineering, 20(5), 04014076. doi:10.1061/(asce)be.1943-5592.0000671 es_ES
dc.description.references Gheitasi, A., & Harris, D. K. (2015). Failure Characteristics and Ultimate Load-Carrying Capacity of Redundant Composite Steel Girder Bridges: Case Study. Journal of Bridge Engineering, 20(3), 05014012. doi:10.1061/(asce)be.1943-5592.0000667 es_ES
dc.description.references Saraf, V., & Nowak, A. S. (1998). Proof Load Testing of Deteriorated Steel Girder Bridges. Journal of Bridge Engineering, 3(2), 82-89. doi:10.1061/(asce)1084-0702(1998)3:2(82) es_ES
dc.description.references Su, Q., Dai, C., & Xu, C. (2018). Full-Scale Experimental Study on the Negative Flexural Behavior of Orthotropic Steel–Concrete Composite Bridge Deck. Journal of Bridge Engineering, 23(12), 04018097. doi:10.1061/(asce)be.1943-5592.0001320 es_ES
dc.description.references Zona, A., Barbato, M., Dall’Asta, A., & Dezi, L. (2010). Probabilistic analysis for design assessment of continuous steel–concrete composite girders. Journal of Constructional Steel Research, 66(7), 897-905. doi:10.1016/j.jcsr.2010.01.015 es_ES
dc.description.references Gara, F., Ranzi, G., & Leoni, G. (2011). Simplified method of analysis accounting for shear-lag effects in composite bridge decks. Journal of Constructional Steel Research, 67(10), 1684-1697. doi:10.1016/j.jcsr.2011.04.013 es_ES
dc.description.references Nie, J.-G., & Zhu, L. (2014). Beam-Truss Model of Steel-Concrete Composite Box-Girder Bridges. Journal of Bridge Engineering, 19(7), 04014023. doi:10.1061/(asce)be.1943-5592.0000592 es_ES
dc.description.references Deng, Y., Phares, B. M., & Steffens, O. W. (2016). Experimental and numerical evaluation of a folded plate girder system for short-span bridges – A case study. Engineering Structures, 113, 26-40. doi:10.1016/j.engstruct.2016.01.027 es_ES
dc.description.references Jia, B., Yu, X., Yan, Q., & Yang, Z. (2016). Study on the System Reliability of Steel-Concrete Composite Beam Cable-stayed Bridge. The Open Civil Engineering Journal, 10(1), 418-432. doi:10.2174/1874149501609010194 es_ES
dc.description.references Tong, T., Yu, Q., & Su, Q. (2018). Coupled Effects of Concrete Shrinkage, Creep, and Cracking on the Performance of Postconnected Prestressed Steel-Concrete Composite Girders. Journal of Bridge Engineering, 23(3), 04017145. doi:10.1061/(asce)be.1943-5592.0001192 es_ES
dc.description.references Harris, D. K. (2010). Assessment of flexural lateral load distribution methodologies for stringer bridges. Engineering Structures, 32(11), 3443-3451. doi:10.1016/j.engstruct.2010.06.008 es_ES
dc.description.references Harris, D. K., & Gheitasi, A. (2013). Implementation of an energy-based stiffened plate formulation for lateral load distribution characteristics of girder-type bridges. Engineering Structures, 54, 168-179. doi:10.1016/j.engstruct.2013.04.002 es_ES
dc.description.references Zhang, Y., & Der Kiureghian, A. (1993). Dynamic response sensitivity of inelastic structures. Computer Methods in Applied Mechanics and Engineering, 108(1-2), 23-36. doi:10.1016/0045-7825(93)90151-m es_ES
dc.description.references Conte, J. P., Vijalapura, P. K., & Meghella, M. (2003). Consistent Finite-Element Response Sensitivity Analysis. Journal of Engineering Mechanics, 129(12), 1380-1393. doi:10.1061/(asce)0733-9399(2003)129:12(1380) es_ES
dc.description.references Martí, J. V., García-Segura, T., & Yepes, V. (2016). Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy. Journal of Cleaner Production, 120, 231-240. doi:10.1016/j.jclepro.2016.02.024 es_ES
dc.description.references Yepes, V., Martí, J. V., García-Segura, T., & González-Vidosa, F. (2017). Heuristics in optimal detailed design of precast road bridges. Archives of Civil and Mechanical Engineering, 17(4), 738-749. doi:10.1016/j.acme.2017.02.006 es_ES
dc.description.references Penadés-Plà, V., García-Segura, T., Martí, J., & Yepes, V. (2018). An Optimization-LCA of a Prestressed Concrete Precast Bridge. Sustainability, 10(3), 685. doi:10.3390/su10030685 es_ES
dc.description.references Yepes, V., Dasí-Gil, M., Martínez-Muñoz, D., López-Desfilis, V. J., & Martí, J. V. (2019). Heuristic Techniques for the Design of Steel-Concrete Composite Pedestrian Bridges. Applied Sciences, 9(16), 3253. doi:10.3390/app9163253 es_ES
dc.description.references Batikha, M., Al Ani, O., & Elhag, T. (2017). The effect of span length and girder type on bridge costs. MATEC Web of Conferences, 120, 08009. doi:10.1051/matecconf/201712008009 es_ES
dc.description.references SURTEES, J., & TORDOFF, D. (1977). OPTIMUM DESIGN OF COMPOSITE BOX GIRDER BRIDGE STRUCTURES. Proceedings of the Institution of Civil Engineers, 63(1), 181-198. doi:10.1680/iicep.1977.3300 es_ES
dc.description.references Briseghella, B., Fenu, L., Lan, C., Mazzarolo, E., & Zordan, T. (2013). Application of Topological Optimization to Bridge Design. Journal of Bridge Engineering, 18(8), 790-800. doi:10.1061/(asce)be.1943-5592.0000416 es_ES
dc.description.references Bendsøe, M. P. (1989). Optimal shape design as a material distribution problem. Structural Optimization, 1(4), 193-202. doi:10.1007/bf01650949 es_ES
dc.description.references Bendsøe, M. P., & Kikuchi, N. (1988). Generating optimal topologies in structural design using a homogenization method. Computer Methods in Applied Mechanics and Engineering, 71(2), 197-224. doi:10.1016/0045-7825(88)90086-2 es_ES
dc.description.references Sigmund, O. (2001). A 99 line topology optimization code written in Matlab. Structural and Multidisciplinary Optimization, 21(2), 120-127. doi:10.1007/s001580050176 es_ES
dc.description.references Edwards, C. S., Kim, H. A., & Budd, C. J. (2007). An evaluative study on ESO and SIMP for optimising a cantilever tie—beam. Structural and Multidisciplinary Optimization, 34(5), 403-414. doi:10.1007/s00158-007-0102-x es_ES
dc.description.references Xie, Y. M., & Steven, G. P. (1993). A simple evolutionary procedure for structural optimization. Computers & Structures, 49(5), 885-896. doi:10.1016/0045-7949(93)90035-c es_ES
dc.description.references Pedro, R. L., Demarche, J., Miguel, L. F. F., & Lopez, R. H. (2017). An efficient approach for the optimization of simply supported steel-concrete composite I-girder bridges. Advances in Engineering Software, 112, 31-45. doi:10.1016/j.advengsoft.2017.06.009 es_ES
dc.description.references Lv, N., & Fan, L. (2014). Optimization of Quickly Assembled Steel-Concrete Composite Bridge Used in Temporary. Modern Applied Science, 8(4). doi:10.5539/mas.v8n4p134 es_ES
dc.description.references Orcesi, A., Cremona, C., & Ta, B. (2018). Optimization of Design and Life-Cycle Management for Steel–Concrete Composite Bridges. Structural Engineering International, 28(2), 185-195. doi:10.1080/10168664.2018.1453763 es_ES
dc.description.references Rempling, R., Mathern, A., Tarazona Ramos, D., & Luis Fernández, S. (2019). Automatic structural design by a set-based parametric design method. Automation in Construction, 108, 102936. doi:10.1016/j.autcon.2019.102936 es_ES
dc.description.references Nahm, Y.-E., & Ishikawa, H. (2006). A new 3D-CAD system for set-based parametric design. The International Journal of Advanced Manufacturing Technology, 29(1-2), 137-150. doi:10.1007/s00170-004-2213-5 es_ES
dc.description.references The second Toyota paradox: How delaying decisions can make better cars faster. (1995). Long Range Planning, 28(4), 129. doi:10.1016/0024-6301(95)94310-u es_ES
dc.description.references Kaveh, A., Bakhshpoori, T., & Barkhori, M. (2014). Optimum design of multi-span composite box girder bridges using Cuckoo Search algorithm. Steel and Composite Structures, 17(5), 705-719. doi:10.12989/scs.2014.17.5.705 es_ES
dc.description.references Kaveh, A., & Zarandi, M. M. M. (2018). Optimal Design of Steel-Concrete Composite I-girder Bridges Using Three Meta-Heuristic Algorithms. Periodica Polytechnica Civil Engineering. doi:10.3311/ppci.12769 es_ES
dc.description.references Kaveh, A., & Mahdavi, V. R. (2014). Colliding bodies optimization: A novel meta-heuristic method. Computers & Structures, 139, 18-27. doi:10.1016/j.compstruc.2014.04.005 es_ES
dc.description.references Kaveh, A., & Ilchi Ghazaan, M. (2014). Enhanced colliding bodies optimization for design problems with continuous and discrete variables. Advances in Engineering Software, 77, 66-75. doi:10.1016/j.advengsoft.2014.08.003 es_ES
dc.description.references Kaveh, A., Kaveh, A., & Ilchi Ghazaan, M. (2017). A new meta-heuristic algorithm: vibrating particles system. Scientia Iranica, 24(2), 551-566. doi:10.24200/sci.2017.2417 es_ES
dc.description.references Civicioglu, P. (2013). Backtracking Search Optimization Algorithm for numerical optimization problems. Applied Mathematics and Computation, 219(15), 8121-8144. doi:10.1016/j.amc.2013.02.017 es_ES
dc.description.references Firefly Algorithm. (2010). Engineering Optimization, 221-230. doi:10.1002/9780470640425.ch17 es_ES
dc.description.references Gonçalves, M. S., Lopez, R. H., & Miguel, L. F. F. (2015). Search group algorithm: A new metaheuristic method for the optimization of truss structures. Computers & Structures, 153, 165-184. doi:10.1016/j.compstruc.2015.03.003 es_ES
dc.description.references García-Segura, T., Penadés-Plà, V., & Yepes, V. (2018). Sustainable bridge design by metamodel-assisted multi-objective optimization and decision-making under uncertainty. Journal of Cleaner Production, 202, 904-915. doi:10.1016/j.jclepro.2018.08.177 es_ES
dc.description.references Yepes, V., García-Segura, T., & Moreno-Jiménez, J. M. (2015). A cognitive approach for the multi-objective optimization of RC structural problems. Archives of Civil and Mechanical Engineering, 15(4), 1024-1036. doi:10.1016/j.acme.2015.05.001 es_ES
dc.description.references Penadés-Plà, V., García-Segura, T., & Yepes, V. (2019). Accelerated optimization method for low-embodied energy concrete box-girder bridge design. Engineering Structures, 179, 556-565. doi:10.1016/j.engstruct.2018.11.015 es_ES
dc.description.references Arnold, F., & Sörensen, K. (2019). What makes a VRP solution good? The generation of problem-specific knowledge for heuristics. Computers & Operations Research, 106, 280-288. doi:10.1016/j.cor.2018.02.007 es_ES
dc.description.references Marí, A., Mirambell, E., & Estrada, I. (2003). Effects of construction process and slab prestressing on the serviceability behaviour of composite bridges. Journal of Constructional Steel Research, 59(2), 135-163. doi:10.1016/s0143-974x(02)00029-9 es_ES
dc.description.references Jung, K., Kim, K., Sim, C., & Kim, J. J. (2011). Verification of Incremental Launching Construction Safety for the Ilsun Bridge, the World’s Longest and Widest Prestressed Concrete Box Girder with Corrugated Steel Web Section. Journal of Bridge Engineering, 16(3), 453-460. doi:10.1061/(asce)be.1943-5592.0000165 es_ES
dc.description.references Hällmark, R., White, H., & Collin, P. (2012). Prefabricated Bridge Construction across Europe and America. Practice Periodical on Structural Design and Construction, 17(3), 82-92. doi:10.1061/(asce)sc.1943-5576.0000116 es_ES
dc.description.references Valipour, H., Rajabi, A., Foster, S. J., & Bradford, M. A. (2015). Arching behaviour of precast concrete slabs in a deconstructable composite bridge deck. Construction and Building Materials, 87, 67-77. doi:10.1016/j.conbuildmat.2015.04.006 es_ES
dc.description.references Navarro, I. J., Martí, J. V., & Yepes, V. (2019). Reliability-based maintenance optimization of corrosion preventive designs under a life cycle perspective. Environmental Impact Assessment Review, 74, 23-34. doi:10.1016/j.eiar.2018.10.001 es_ES
dc.description.references Albrecht, P., & Lenwari, A. (2008). Fatigue Strength of Repaired Prestressed Composite Beams. Journal of Bridge Engineering, 13(4), 409-417. doi:10.1061/(asce)1084-0702(2008)13:4(409) es_ES
dc.description.references SUGIMOTO, I., YOSHIDA, Y., & TANIKAGA, A. (2013). Development of Composite Steel Girder and Concrete Slab Method for Renovation of Existing Steel Railway Bridges. Quarterly Report of RTRI, 54(1), 8-11. doi:10.2219/rtriqr.54.8 es_ES
dc.description.references Gheitasi, A., & Harris, D. K. (2015). Performance assessment of steel–concrete composite bridges with subsurface deck deterioration. Structures, 2, 8-20. doi:10.1016/j.istruc.2014.12.001 es_ES
dc.description.references Gheitasi, A., & Harris, D. K. (2016). Redundancy and Operational Safety of Composite Stringer Bridges with Deteriorated Girders. Journal of Performance of Constructed Facilities, 30(2), 04015022. doi:10.1061/(asce)cf.1943-5509.0000764 es_ES
dc.description.references Matos, J. C., Moreira, V. N., Valente, I. B., Cruz, P. J. S., Neves, L. C., & Galvão, N. (2019). Probabilistic-based assessment of existing steel-concrete composite bridges – Application to Sousa River Bridge. Engineering Structures, 181, 95-110. doi:10.1016/j.engstruct.2018.12.006 es_ES
dc.description.references Jacinto, L., Neves, L. C., & Santos, L. O. (2015). Bayesian assessment of an existing bridge: a case study. Structure and Infrastructure Engineering, 12(1), 61-77. doi:10.1080/15732479.2014.995105 es_ES
dc.description.references Widman, J. (1998). Environmental impact assessment of steel bridges. Journal of Constructional Steel Research, 46(1-3), 291-293. doi:10.1016/s0143-974x(98)80031-x es_ES
dc.description.references Du, G., & Karoumi, R. (2013). Life cycle assessment of a railway bridge: comparison of two superstructure designs. Structure and Infrastructure Engineering, 9(11), 1149-1160. doi:10.1080/15732479.2012.670250 es_ES
dc.description.references Milani, C. J., & Kripka, M. (2019). Evaluation of short span bridge projects with a focus on sustainability. Structure and Infrastructure Engineering, 16(2), 367-380. doi:10.1080/15732479.2019.1662815 es_ES
dc.description.references Lippiatt, B. C. (1999). Selecting Cost-Effective Green Building Products: BEES Approach. Journal of Construction Engineering and Management, 125(6), 448-455. doi:10.1061/(asce)0733-9364(1999)125:6(448) es_ES
dc.description.references Rosén, L., Back, P.-E., Söderqvist, T., Norrman, J., Brinkhoff, P., Norberg, T., … Döberl, G. (2015). SCORE: A novel multi-criteria decision analysis approach to assessing the sustainability of contaminated land remediation. Science of The Total Environment, 511, 621-638. doi:10.1016/j.scitotenv.2014.12.058 es_ES
dc.description.references Sebastian, R., Claeson-Jonsson, C., & Di Giulio, R. (2013). Performance-based procurement for low-disturbance bridge construction projects. Construction Innovation, 13(4), 394-409. doi:10.1108/ci-06-2012-0033 es_ES
dc.description.references Saaty, R. W. (1987). The analytic hierarchy process—what it is and how it is used. Mathematical Modelling, 9(3-5), 161-176. doi:10.1016/0270-0255(87)90473-8 es_ES
dc.description.references Opricovic, S., & Tzeng, G.-H. (2004). Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. European Journal of Operational Research, 156(2), 445-455. doi:10.1016/s0377-2217(03)00020-1 es_ES
dc.description.references Penadés-Plà, V., Yepes, V., & García-Segura, T. (2020). Robust decision-making design for sustainable pedestrian concrete bridges. Engineering Structures, 209, 109968. doi:10.1016/j.engstruct.2019.109968 es_ES
dc.description.references Penadés-Plà, V., García-Segura, T., & Yepes, V. (2020). Robust Design Optimization for Low-Cost Concrete Box-Girder Bridge. Mathematics, 8(3), 398. doi:10.3390/math8030398 es_ES
dc.subject.ods 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem