Mostrar el registro sencillo del ítem
dc.contributor.author | Sharma, Sidharath | es_ES |
dc.contributor.author | GARCIA TISCAR, JORGE | es_ES |
dc.contributor.author | Allport, John M. | es_ES |
dc.contributor.author | Barrans, Simon | es_ES |
dc.contributor.author | Nickson, Ambrose K. | es_ES |
dc.date.accessioned | 2021-02-09T04:32:17Z | |
dc.date.available | 2021-02-09T04:32:17Z | |
dc.date.issued | 2020-08 | es_ES |
dc.identifier.issn | 1468-0874 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/160907 | |
dc.description.abstract | [EN] Centrifugal turbomachines of smaller sizes operating at higher speeds have become pervasive due to the increased specific power and reliability achieved by improvements in manufacturing, materials and computational methods. The presence of these small turbomachines, specifically compressors, in helicopters, unmanned aerial vehicles (UAVs), auxiliary power units (APUs), turbochargers and micro gas turbines necessitates superior aerodynamic performance over a broad operational range which is widely achieved by ported shroud casing designs. In addition to aerodynamic performance, acoustic emissions have become a critical aspect of design for these small centrifugal compressors due to high operational speeds. Furthermore, the literature on the acoustic effects of the casing treatment is rather limited. Therefore, the impact of ported shroud casing treatment on the acoustic and flow features of the compressor operating at the design and near surge conditions have been quantified by numerically modelling the open and blocked configuration of the compressors. Upon comparing with experimental results, the numerical spectra are shown to capture the differences between the two configurations at the investigated operating points with reasonable accuracy. Although the casing treatment is generally seen to decrease the overall acoustic emission of the compressor at both operating conditions, increased propagation of tonal content in the direction upstream to the impeller is observed, particularly for design operation. Broadband characteristics in the lower and medium frequency regions usually associated with near surge operation including `whoosh' noise are observed to be alleviated by the ported shroud casing treatment. | es_ES |
dc.description.sponsorship | The author(s) disclosed receipt of the following financial support for the research, authorship and/or publication of this article: The project is sponsored and supported by BorgWarner Turbo Systems and the Regional Growth Fund (RGF Grant Award 01.09.07.01/1789C). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | SAGE Publications | es_ES |
dc.relation.ispartof | International Journal of Engine Research | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Compressor noise | es_ES |
dc.subject | Stress blended eddy simulation | es_ES |
dc.subject | Ported shroud | es_ES |
dc.subject | Computational fluid dynamics | es_ES |
dc.subject | Aeroacoustics | es_ES |
dc.subject.classification | INGENIERIA AEROESPACIAL | es_ES |
dc.title | Effects of ported shroud casing treatment on the acoustic and flow behaviour of a centrifugal compressor | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1177/1468087419880431 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/RGF//01.09.07.01%2F1789C/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics | es_ES |
dc.description.bibliographicCitation | Sharma, S.; Garcia Tiscar, J.; Allport, JM.; Barrans, S.; Nickson, AK. (2020). Effects of ported shroud casing treatment on the acoustic and flow behaviour of a centrifugal compressor. International Journal of Engine Research. 21(6):998-1011. https://doi.org/10.1177/1468087419880431 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1177/1468087419880431 | es_ES |
dc.description.upvformatpinicio | 998 | es_ES |
dc.description.upvformatpfin | 1011 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 21 | es_ES |
dc.description.issue | 6 | es_ES |
dc.relation.pasarela | S\395043 | es_ES |
dc.contributor.funder | BorgWarner Turbo Systems | es_ES |
dc.contributor.funder | Regional Growth Fund, Reino Unido | es_ES |
dc.description.references | Fisher, F. B. (1988). Application of Map Width Enhancement Devices to Turbocharger Compressor Stages. SAE Technical Paper Series. doi:10.4271/880794 | es_ES |
dc.description.references | Cheng, L., Dimitriou, P., Wang, W., Peng, J., & Aitouche, A. (2018). A novel fuzzy logic variable geometry turbocharger and exhaust gas recirculation control scheme for optimizing the performance and emissions of a diesel engine. International Journal of Engine Research, 21(8), 1298-1313. doi:10.1177/1468087418809261 | es_ES |
dc.description.references | Teng, C., & Homco, S. (2009). Investigation of Compressor Whoosh Noise in Automotive Turbochargers. SAE International Journal of Passenger Cars - Mechanical Systems, 2(1), 1345-1351. doi:10.4271/2009-01-2053 | es_ES |
dc.description.references | Figurella, N., Dehner, R., Selamet, A., Tallio, K., Miazgowicz, K., & Wade, R. (2014). Noise at the mid to high flow range of a turbocharger compressor. Noise Control Engineering Journal, 62(5), 306-312. doi:10.3397/1/376229 | es_ES |
dc.description.references | Raitor, T., & Neise, W. (2008). Sound generation in centrifugal compressors. Journal of Sound and Vibration, 314(3-5), 738-756. doi:10.1016/j.jsv.2008.01.034 | es_ES |
dc.description.references | Tiikoja, H., Rämmal, H., Abom, M., & Boden, H. (2011). Investigations of Automotive Turbocharger Acoustics. SAE International Journal of Engines, 4(2), 2531-2542. doi:10.4271/2011-24-0221 | es_ES |
dc.description.references | Sharma, S., Broatch, A., García-Tíscar, J., Allport, J. M., & Nickson, A. K. (2018). Acoustic characteristics of a ported shroud turbocompressor operating at design conditions. International Journal of Engine Research, 21(8), 1454-1468. doi:10.1177/1468087418814635 | es_ES |
dc.description.references | Broatch, A., Galindo, J., Navarro, R., & García-Tíscar, J. (2014). Methodology for experimental validation of a CFD model for predicting noise generation in centrifugal compressors. International Journal of Heat and Fluid Flow, 50, 134-144. doi:10.1016/j.ijheatfluidflow.2014.06.006 | es_ES |
dc.description.references | Broatch, A., García-Tíscar, J., Roig, F., & Sharma, S. (2019). Dynamic mode decomposition of the acoustic field in radial compressors. Aerospace Science and Technology, 90, 388-400. doi:10.1016/j.ast.2019.05.015 | es_ES |
dc.description.references | Sundström, E., Semlitsch, B., & Mihăescu, M. (2017). Generation Mechanisms of Rotating Stall and Surge in Centrifugal Compressors. Flow, Turbulence and Combustion, 100(3), 705-719. doi:10.1007/s10494-017-9877-z | es_ES |
dc.description.references | Sundström, E., Semlitsch, B., & Mihăescu, M. (2018). Acoustic signature of flow instabilities in radial compressors. Journal of Sound and Vibration, 434, 221-236. doi:10.1016/j.jsv.2018.07.040 | es_ES |
dc.description.references | Chen, H., & Lei, V.-M. (2013). Casing Treatment and Inlet Swirl of Centrifugal Compressors. Journal of Turbomachinery, 135(4). doi:10.1115/1.4007739 | es_ES |
dc.description.references | Dehner, R. D., Selamet, A., Steiger, M., Miazgowicz, K., & Karim, A. (2017). The Effect of Ported Shroud Recirculating Casing Treatment on Turbocharger Centrifugal Compressor Acoustics. SAE International Journal of Engines, 10(4), 2057-2066. doi:10.4271/2017-01-1796 | es_ES |
dc.description.references | Song, K., Zhao, B., Sun, H., & Yi, W. (2018). A physics-based zero-dimensional model for the mass flow rate of a turbocharger compressor with uniform/distorted inlet condition. International Journal of Engine Research, 20(6), 624-639. doi:10.1177/1468087418773673 | es_ES |
dc.description.references | Broatch, A., Margot, X., García-Tíscar, J., & Roig, F. (2018). Impact of simple surge-enhancing inlet geometries on the acoustic behavior of a turbocompressor. International Journal of Engine Research, 21(5), 794-800. doi:10.1177/1468087418784125 | es_ES |
dc.description.references | Galindo, J., Navarro, R., García-Cuevas, L. M., Tarí, D., Tartoussi, H., & Guilain, S. (2018). A zonal approach for estimating pressure ratio at compressor extreme off-design conditions. International Journal of Engine Research, 20(4), 393-404. doi:10.1177/1468087418754899 | es_ES |
dc.description.references | Sharma, S., Broatch, A., García-Tíscar, J., Allport, J. M., & Nickson, A. K. (2019). Acoustic characterisation of a small high-speed centrifugal compressor with casing treatment: An experimental study. Aerospace Science and Technology, 95, 105518. doi:10.1016/j.ast.2019.105518 | es_ES |
dc.description.references | Menter, F. (2018). Stress-Blended Eddy Simulation (SBES)—A New Paradigm in Hybrid RANS-LES Modeling. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 27-37. doi:10.1007/978-3-319-70031-1_3 | es_ES |
dc.description.references | Serrano, J. R., Olmeda, P., Arnau, F. J., & Samala, V. (2019). A holistic methodology to correct heat transfer and bearing friction losses from hot turbocharger maps in order to obtain adiabatic efficiency of the turbomachinery. International Journal of Engine Research, 21(8), 1314-1335. doi:10.1177/1468087419834194 | es_ES |
dc.description.references | Gil, A., Tiseira, A. O., García-Cuevas, L. M., Usaquén, T. R., & Mijotte, G. (2018). Fast three-dimensional heat transfer model for computing internal temperatures in the bearing housing of automotive turbochargers. International Journal of Engine Research, 21(8), 1286-1297. doi:10.1177/1468087418804949 | es_ES |
dc.description.references | Sharma, S., Broatch, A., García-Tíscar, J., Nickson, A. K., & Allport, J. M. (2019). Acoustic and pressure characteristics of a ported shroud turbocompressor operating at near surge conditions. Applied Acoustics, 148, 434-447. doi:10.1016/j.apacoust.2019.01.005 | es_ES |
dc.description.references | Herwig, H., & Schmandt, B. (2014). How to Determine Losses in a Flow Field: A Paradigm Shift towards the Second Law Analysis. Entropy, 16(6), 2959-2989. doi:10.3390/e16062959 | es_ES |