- -

Effects of ported shroud casing treatment on the acoustic and flow behaviour of a centrifugal compressor

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Effects of ported shroud casing treatment on the acoustic and flow behaviour of a centrifugal compressor

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sharma, Sidharath es_ES
dc.contributor.author GARCIA TISCAR, JORGE es_ES
dc.contributor.author Allport, John M. es_ES
dc.contributor.author Barrans, Simon es_ES
dc.contributor.author Nickson, Ambrose K. es_ES
dc.date.accessioned 2021-02-09T04:32:17Z
dc.date.available 2021-02-09T04:32:17Z
dc.date.issued 2020-08 es_ES
dc.identifier.issn 1468-0874 es_ES
dc.identifier.uri http://hdl.handle.net/10251/160907
dc.description.abstract [EN] Centrifugal turbomachines of smaller sizes operating at higher speeds have become pervasive due to the increased specific power and reliability achieved by improvements in manufacturing, materials and computational methods. The presence of these small turbomachines, specifically compressors, in helicopters, unmanned aerial vehicles (UAVs), auxiliary power units (APUs), turbochargers and micro gas turbines necessitates superior aerodynamic performance over a broad operational range which is widely achieved by ported shroud casing designs. In addition to aerodynamic performance, acoustic emissions have become a critical aspect of design for these small centrifugal compressors due to high operational speeds. Furthermore, the literature on the acoustic effects of the casing treatment is rather limited. Therefore, the impact of ported shroud casing treatment on the acoustic and flow features of the compressor operating at the design and near surge conditions have been quantified by numerically modelling the open and blocked configuration of the compressors. Upon comparing with experimental results, the numerical spectra are shown to capture the differences between the two configurations at the investigated operating points with reasonable accuracy. Although the casing treatment is generally seen to decrease the overall acoustic emission of the compressor at both operating conditions, increased propagation of tonal content in the direction upstream to the impeller is observed, particularly for design operation. Broadband characteristics in the lower and medium frequency regions usually associated with near surge operation including `whoosh' noise are observed to be alleviated by the ported shroud casing treatment. es_ES
dc.description.sponsorship The author(s) disclosed receipt of the following financial support for the research, authorship and/or publication of this article: The project is sponsored and supported by BorgWarner Turbo Systems and the Regional Growth Fund (RGF Grant Award 01.09.07.01/1789C). es_ES
dc.language Inglés es_ES
dc.publisher SAGE Publications es_ES
dc.relation.ispartof International Journal of Engine Research es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Compressor noise es_ES
dc.subject Stress blended eddy simulation es_ES
dc.subject Ported shroud es_ES
dc.subject Computational fluid dynamics es_ES
dc.subject Aeroacoustics es_ES
dc.subject.classification INGENIERIA AEROESPACIAL es_ES
dc.title Effects of ported shroud casing treatment on the acoustic and flow behaviour of a centrifugal compressor es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1177/1468087419880431 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/RGF//01.09.07.01%2F1789C/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation Sharma, S.; Garcia Tiscar, J.; Allport, JM.; Barrans, S.; Nickson, AK. (2020). Effects of ported shroud casing treatment on the acoustic and flow behaviour of a centrifugal compressor. International Journal of Engine Research. 21(6):998-1011. https://doi.org/10.1177/1468087419880431 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1177/1468087419880431 es_ES
dc.description.upvformatpinicio 998 es_ES
dc.description.upvformatpfin 1011 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 21 es_ES
dc.description.issue 6 es_ES
dc.relation.pasarela S\395043 es_ES
dc.contributor.funder BorgWarner Turbo Systems es_ES
dc.contributor.funder Regional Growth Fund, Reino Unido es_ES
dc.description.references Fisher, F. B. (1988). Application of Map Width Enhancement Devices to Turbocharger Compressor Stages. SAE Technical Paper Series. doi:10.4271/880794 es_ES
dc.description.references Cheng, L., Dimitriou, P., Wang, W., Peng, J., & Aitouche, A. (2018). A novel fuzzy logic variable geometry turbocharger and exhaust gas recirculation control scheme for optimizing the performance and emissions of a diesel engine. International Journal of Engine Research, 21(8), 1298-1313. doi:10.1177/1468087418809261 es_ES
dc.description.references Teng, C., & Homco, S. (2009). Investigation of Compressor Whoosh Noise in Automotive Turbochargers. SAE International Journal of Passenger Cars - Mechanical Systems, 2(1), 1345-1351. doi:10.4271/2009-01-2053 es_ES
dc.description.references Figurella, N., Dehner, R., Selamet, A., Tallio, K., Miazgowicz, K., & Wade, R. (2014). Noise at the mid to high flow range of a turbocharger compressor. Noise Control Engineering Journal, 62(5), 306-312. doi:10.3397/1/376229 es_ES
dc.description.references Raitor, T., & Neise, W. (2008). Sound generation in centrifugal compressors. Journal of Sound and Vibration, 314(3-5), 738-756. doi:10.1016/j.jsv.2008.01.034 es_ES
dc.description.references Tiikoja, H., Rämmal, H., Abom, M., & Boden, H. (2011). Investigations of Automotive Turbocharger Acoustics. SAE International Journal of Engines, 4(2), 2531-2542. doi:10.4271/2011-24-0221 es_ES
dc.description.references Sharma, S., Broatch, A., García-Tíscar, J., Allport, J. M., & Nickson, A. K. (2018). Acoustic characteristics of a ported shroud turbocompressor operating at design conditions. International Journal of Engine Research, 21(8), 1454-1468. doi:10.1177/1468087418814635 es_ES
dc.description.references Broatch, A., Galindo, J., Navarro, R., & García-Tíscar, J. (2014). Methodology for experimental validation of a CFD model for predicting noise generation in centrifugal compressors. International Journal of Heat and Fluid Flow, 50, 134-144. doi:10.1016/j.ijheatfluidflow.2014.06.006 es_ES
dc.description.references Broatch, A., García-Tíscar, J., Roig, F., & Sharma, S. (2019). Dynamic mode decomposition of the acoustic field in radial compressors. Aerospace Science and Technology, 90, 388-400. doi:10.1016/j.ast.2019.05.015 es_ES
dc.description.references Sundström, E., Semlitsch, B., & Mihăescu, M. (2017). Generation Mechanisms of Rotating Stall and Surge in Centrifugal Compressors. Flow, Turbulence and Combustion, 100(3), 705-719. doi:10.1007/s10494-017-9877-z es_ES
dc.description.references Sundström, E., Semlitsch, B., & Mihăescu, M. (2018). Acoustic signature of flow instabilities in radial compressors. Journal of Sound and Vibration, 434, 221-236. doi:10.1016/j.jsv.2018.07.040 es_ES
dc.description.references Chen, H., & Lei, V.-M. (2013). Casing Treatment and Inlet Swirl of Centrifugal Compressors. Journal of Turbomachinery, 135(4). doi:10.1115/1.4007739 es_ES
dc.description.references Dehner, R. D., Selamet, A., Steiger, M., Miazgowicz, K., & Karim, A. (2017). The Effect of Ported Shroud Recirculating Casing Treatment on Turbocharger Centrifugal Compressor Acoustics. SAE International Journal of Engines, 10(4), 2057-2066. doi:10.4271/2017-01-1796 es_ES
dc.description.references Song, K., Zhao, B., Sun, H., & Yi, W. (2018). A physics-based zero-dimensional model for the mass flow rate of a turbocharger compressor with uniform/distorted inlet condition. International Journal of Engine Research, 20(6), 624-639. doi:10.1177/1468087418773673 es_ES
dc.description.references Broatch, A., Margot, X., García-Tíscar, J., & Roig, F. (2018). Impact of simple surge-enhancing inlet geometries on the acoustic behavior of a turbocompressor. International Journal of Engine Research, 21(5), 794-800. doi:10.1177/1468087418784125 es_ES
dc.description.references Galindo, J., Navarro, R., García-Cuevas, L. M., Tarí, D., Tartoussi, H., & Guilain, S. (2018). A zonal approach for estimating pressure ratio at compressor extreme off-design conditions. International Journal of Engine Research, 20(4), 393-404. doi:10.1177/1468087418754899 es_ES
dc.description.references Sharma, S., Broatch, A., García-Tíscar, J., Allport, J. M., & Nickson, A. K. (2019). Acoustic characterisation of a small high-speed centrifugal compressor with casing treatment: An experimental study. Aerospace Science and Technology, 95, 105518. doi:10.1016/j.ast.2019.105518 es_ES
dc.description.references Menter, F. (2018). Stress-Blended Eddy Simulation (SBES)—A New Paradigm in Hybrid RANS-LES Modeling. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 27-37. doi:10.1007/978-3-319-70031-1_3 es_ES
dc.description.references Serrano, J. R., Olmeda, P., Arnau, F. J., & Samala, V. (2019). A holistic methodology to correct heat transfer and bearing friction losses from hot turbocharger maps in order to obtain adiabatic efficiency of the turbomachinery. International Journal of Engine Research, 21(8), 1314-1335. doi:10.1177/1468087419834194 es_ES
dc.description.references Gil, A., Tiseira, A. O., García-Cuevas, L. M., Usaquén, T. R., & Mijotte, G. (2018). Fast three-dimensional heat transfer model for computing internal temperatures in the bearing housing of automotive turbochargers. International Journal of Engine Research, 21(8), 1286-1297. doi:10.1177/1468087418804949 es_ES
dc.description.references Sharma, S., Broatch, A., García-Tíscar, J., Nickson, A. K., & Allport, J. M. (2019). Acoustic and pressure characteristics of a ported shroud turbocompressor operating at near surge conditions. Applied Acoustics, 148, 434-447. doi:10.1016/j.apacoust.2019.01.005 es_ES
dc.description.references Herwig, H., & Schmandt, B. (2014). How to Determine Losses in a Flow Field: A Paradigm Shift towards the Second Law Analysis. Entropy, 16(6), 2959-2989. doi:10.3390/e16062959 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem