- -

Effects of ported shroud casing treatment on the acoustic and flow behaviour of a centrifugal compressor

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Effects of ported shroud casing treatment on the acoustic and flow behaviour of a centrifugal compressor

Mostrar el registro completo del ítem

Sharma, S.; Garcia Tiscar, J.; Allport, JM.; Barrans, S.; Nickson, AK. (2020). Effects of ported shroud casing treatment on the acoustic and flow behaviour of a centrifugal compressor. International Journal of Engine Research. 21(6):998-1011. https://doi.org/10.1177/1468087419880431

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/160907

Ficheros en el ítem

Metadatos del ítem

Título: Effects of ported shroud casing treatment on the acoustic and flow behaviour of a centrifugal compressor
Autor: Sharma, Sidharath GARCIA TISCAR, JORGE Allport, John M. Barrans, Simon Nickson, Ambrose K.
Entidad UPV: Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics
Fecha difusión:
Resumen:
[EN] Centrifugal turbomachines of smaller sizes operating at higher speeds have become pervasive due to the increased specific power and reliability achieved by improvements in manufacturing, materials and computational ...[+]
Palabras clave: Compressor noise , Stress blended eddy simulation , Ported shroud , Computational fluid dynamics , Aeroacoustics
Derechos de uso: Reserva de todos los derechos
Fuente:
International Journal of Engine Research. (issn: 1468-0874 )
DOI: 10.1177/1468087419880431
Editorial:
SAGE Publications
Versión del editor: https://doi.org/10.1177/1468087419880431
Código del Proyecto:
info:eu-repo/grantAgreement/RGF//01.09.07.01%2F1789C/
Agradecimientos:
The author(s) disclosed receipt of the following financial support for the research, authorship and/or publication of this article: The project is sponsored and supported by BorgWarner Turbo Systems and the Regional Growth ...[+]
Tipo: Artículo

References

Fisher, F. B. (1988). Application of Map Width Enhancement Devices to Turbocharger Compressor Stages. SAE Technical Paper Series. doi:10.4271/880794

Cheng, L., Dimitriou, P., Wang, W., Peng, J., & Aitouche, A. (2018). A novel fuzzy logic variable geometry turbocharger and exhaust gas recirculation control scheme for optimizing the performance and emissions of a diesel engine. International Journal of Engine Research, 21(8), 1298-1313. doi:10.1177/1468087418809261

Teng, C., & Homco, S. (2009). Investigation of Compressor Whoosh Noise in Automotive Turbochargers. SAE International Journal of Passenger Cars - Mechanical Systems, 2(1), 1345-1351. doi:10.4271/2009-01-2053 [+]
Fisher, F. B. (1988). Application of Map Width Enhancement Devices to Turbocharger Compressor Stages. SAE Technical Paper Series. doi:10.4271/880794

Cheng, L., Dimitriou, P., Wang, W., Peng, J., & Aitouche, A. (2018). A novel fuzzy logic variable geometry turbocharger and exhaust gas recirculation control scheme for optimizing the performance and emissions of a diesel engine. International Journal of Engine Research, 21(8), 1298-1313. doi:10.1177/1468087418809261

Teng, C., & Homco, S. (2009). Investigation of Compressor Whoosh Noise in Automotive Turbochargers. SAE International Journal of Passenger Cars - Mechanical Systems, 2(1), 1345-1351. doi:10.4271/2009-01-2053

Figurella, N., Dehner, R., Selamet, A., Tallio, K., Miazgowicz, K., & Wade, R. (2014). Noise at the mid to high flow range of a turbocharger compressor. Noise Control Engineering Journal, 62(5), 306-312. doi:10.3397/1/376229

Raitor, T., & Neise, W. (2008). Sound generation in centrifugal compressors. Journal of Sound and Vibration, 314(3-5), 738-756. doi:10.1016/j.jsv.2008.01.034

Tiikoja, H., Rämmal, H., Abom, M., & Boden, H. (2011). Investigations of Automotive Turbocharger Acoustics. SAE International Journal of Engines, 4(2), 2531-2542. doi:10.4271/2011-24-0221

Sharma, S., Broatch, A., García-Tíscar, J., Allport, J. M., & Nickson, A. K. (2018). Acoustic characteristics of a ported shroud turbocompressor operating at design conditions. International Journal of Engine Research, 21(8), 1454-1468. doi:10.1177/1468087418814635

Broatch, A., Galindo, J., Navarro, R., & García-Tíscar, J. (2014). Methodology for experimental validation of a CFD model for predicting noise generation in centrifugal compressors. International Journal of Heat and Fluid Flow, 50, 134-144. doi:10.1016/j.ijheatfluidflow.2014.06.006

Broatch, A., García-Tíscar, J., Roig, F., & Sharma, S. (2019). Dynamic mode decomposition of the acoustic field in radial compressors. Aerospace Science and Technology, 90, 388-400. doi:10.1016/j.ast.2019.05.015

Sundström, E., Semlitsch, B., & Mihăescu, M. (2017). Generation Mechanisms of Rotating Stall and Surge in Centrifugal Compressors. Flow, Turbulence and Combustion, 100(3), 705-719. doi:10.1007/s10494-017-9877-z

Sundström, E., Semlitsch, B., & Mihăescu, M. (2018). Acoustic signature of flow instabilities in radial compressors. Journal of Sound and Vibration, 434, 221-236. doi:10.1016/j.jsv.2018.07.040

Chen, H., & Lei, V.-M. (2013). Casing Treatment and Inlet Swirl of Centrifugal Compressors. Journal of Turbomachinery, 135(4). doi:10.1115/1.4007739

Dehner, R. D., Selamet, A., Steiger, M., Miazgowicz, K., & Karim, A. (2017). The Effect of Ported Shroud Recirculating Casing Treatment on Turbocharger Centrifugal Compressor Acoustics. SAE International Journal of Engines, 10(4), 2057-2066. doi:10.4271/2017-01-1796

Song, K., Zhao, B., Sun, H., & Yi, W. (2018). A physics-based zero-dimensional model for the mass flow rate of a turbocharger compressor with uniform/distorted inlet condition. International Journal of Engine Research, 20(6), 624-639. doi:10.1177/1468087418773673

Broatch, A., Margot, X., García-Tíscar, J., & Roig, F. (2018). Impact of simple surge-enhancing inlet geometries on the acoustic behavior of a turbocompressor. International Journal of Engine Research, 21(5), 794-800. doi:10.1177/1468087418784125

Galindo, J., Navarro, R., García-Cuevas, L. M., Tarí, D., Tartoussi, H., & Guilain, S. (2018). A zonal approach for estimating pressure ratio at compressor extreme off-design conditions. International Journal of Engine Research, 20(4), 393-404. doi:10.1177/1468087418754899

Sharma, S., Broatch, A., García-Tíscar, J., Allport, J. M., & Nickson, A. K. (2019). Acoustic characterisation of a small high-speed centrifugal compressor with casing treatment: An experimental study. Aerospace Science and Technology, 95, 105518. doi:10.1016/j.ast.2019.105518

Menter, F. (2018). Stress-Blended Eddy Simulation (SBES)—A New Paradigm in Hybrid RANS-LES Modeling. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 27-37. doi:10.1007/978-3-319-70031-1_3

Serrano, J. R., Olmeda, P., Arnau, F. J., & Samala, V. (2019). A holistic methodology to correct heat transfer and bearing friction losses from hot turbocharger maps in order to obtain adiabatic efficiency of the turbomachinery. International Journal of Engine Research, 21(8), 1314-1335. doi:10.1177/1468087419834194

Gil, A., Tiseira, A. O., García-Cuevas, L. M., Usaquén, T. R., & Mijotte, G. (2018). Fast three-dimensional heat transfer model for computing internal temperatures in the bearing housing of automotive turbochargers. International Journal of Engine Research, 21(8), 1286-1297. doi:10.1177/1468087418804949

Sharma, S., Broatch, A., García-Tíscar, J., Nickson, A. K., & Allport, J. M. (2019). Acoustic and pressure characteristics of a ported shroud turbocompressor operating at near surge conditions. Applied Acoustics, 148, 434-447. doi:10.1016/j.apacoust.2019.01.005

Herwig, H., & Schmandt, B. (2014). How to Determine Losses in a Flow Field: A Paradigm Shift towards the Second Law Analysis. Entropy, 16(6), 2959-2989. doi:10.3390/e16062959

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem