- -

An alternative analysis for the local convergence of iterative methods for multiple roots including when the multiplicity is unknown

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

An alternative analysis for the local convergence of iterative methods for multiple roots including when the multiplicity is unknown

Show full item record

Alarcon, D.; Hueso, JL.; Martínez Molada, E. (2020). An alternative analysis for the local convergence of iterative methods for multiple roots including when the multiplicity is unknown. International Journal of Computer Mathematics. 97(1-2):312-329. https://doi.org/10.1080/00207160.2019.1589460

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/160908

Files in this item

Item Metadata

Title: An alternative analysis for the local convergence of iterative methods for multiple roots including when the multiplicity is unknown
Author: Alarcon, Diego Hueso, Jose L. Martínez Molada, Eulalia
UPV Unit: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Issued date:
Abstract:
[EN] In this paper we propose an alternative for the study of local convergence radius and the uniqueness radius for some third-order methods for multiple roots whose multiplicity is known. The main goal is to provide an ...[+]
Subjects: Nonlinear equations , Iterative methods , Multiple roots , Convergence ball , Local convergence , Nonlinear algebraic or transcendental equations
Copyrigths: Reserva de todos los derechos
Source:
International Journal of Computer Mathematics. (issn: 0020-7160 )
DOI: 10.1080/00207160.2019.1589460
Publisher:
Taylor & Francis
Publisher version: https://doi.org/10.1080/00207160.2019.1589460
Project ID:
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F089/ES/Resolución de ecuaciones y sistemas no lineales mediante técnicas iterativas: análisis dinámico y aplicaciones/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095896-B-C22/ES/DISEÑO, ANALISIS Y ESTABILIDAD DE PROCESOS ITERATIVOS APLICADOS A LAS ECUACIONES INTEGRALES Y MATRICIALES Y A LA COMUNICACION AEROESPACIAL/
Thanks:
This work was supported by Secretaria de Educacion Superior, Ciencia, Tecnologia e Innovacion (Convocatoria Abierta 2015 fase II).
Type: Artículo

References

Argyros, I. (2003). On The Convergence And Application Of Newton’s Method Under Weak HÖlder Continuity Assumptions. International Journal of Computer Mathematics, 80(6), 767-780. doi:10.1080/0020716021000059160

Hueso, J. L., Martínez, E., & Teruel, C. (2014). Determination of multiple roots of nonlinear equations and applications. Journal of Mathematical Chemistry, 53(3), 880-892. doi:10.1007/s10910-014-0460-8

McNamee, J. M. (1998). A comparison of methods for accelerating convergence of Newton’s method for multiple polynomial roots. ACM SIGNUM Newsletter, 33(2), 17-22. doi:10.1145/290590.290592 [+]
Argyros, I. (2003). On The Convergence And Application Of Newton’s Method Under Weak HÖlder Continuity Assumptions. International Journal of Computer Mathematics, 80(6), 767-780. doi:10.1080/0020716021000059160

Hueso, J. L., Martínez, E., & Teruel, C. (2014). Determination of multiple roots of nonlinear equations and applications. Journal of Mathematical Chemistry, 53(3), 880-892. doi:10.1007/s10910-014-0460-8

McNamee, J. M. (1998). A comparison of methods for accelerating convergence of Newton’s method for multiple polynomial roots. ACM SIGNUM Newsletter, 33(2), 17-22. doi:10.1145/290590.290592

Ortega, J. M. (1974). Solution of Equations in Euclidean and Banach Spaces (A. M. Ostrowski). SIAM Review, 16(4), 564-564. doi:10.1137/1016102

Osada, N. (1994). An optimal multiple root-finding method of order three. Journal of Computational and Applied Mathematics, 51(1), 131-133. doi:10.1016/0377-0427(94)00044-1

Schr�der, E. (1870). Ueber unendlich viele Algorithmen zur Aufl�sung der Gleichungen. Mathematische Annalen, 2(2), 317-365. doi:10.1007/bf01444024

Vander Stracten, M., & Van de Vel, H. (1992). Multiple root-finding methods. Journal of Computational and Applied Mathematics, 40(1), 105-114. doi:10.1016/0377-0427(92)90045-y

Zhou, X., Chen, X., & Song, Y. (2013). On the convergence radius of the modified Newton method for multiple roots under the center–Hölder condition. Numerical Algorithms, 65(2), 221-232. doi:10.1007/s11075-013-9702-2

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record