Mostrar el registro completo del ítem
Alarcon, D.; Hueso, JL.; Martínez Molada, E. (2020). An alternative analysis for the local convergence of iterative methods for multiple roots including when the multiplicity is unknown. International Journal of Computer Mathematics. 97(1-2):312-329. https://doi.org/10.1080/00207160.2019.1589460
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/160908
Título: | An alternative analysis for the local convergence of iterative methods for multiple roots including when the multiplicity is unknown | |
Autor: | Alarcon, Diego | |
Entidad UPV: |
|
|
Fecha difusión: |
|
|
Resumen: |
[EN] In this paper we propose an alternative for the study of local convergence radius and the uniqueness radius for some third-order methods for multiple roots whose multiplicity is known. The main goal is to provide an ...[+]
|
|
Palabras clave: |
|
|
Derechos de uso: | Reserva de todos los derechos | |
Fuente: |
|
|
DOI: |
|
|
Editorial: |
|
|
Versión del editor: | https://doi.org/10.1080/00207160.2019.1589460 | |
Código del Proyecto: |
|
|
Agradecimientos: |
|
|
Tipo: |
|