- -

An alternative analysis for the local convergence of iterative methods for multiple roots including when the multiplicity is unknown

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

An alternative analysis for the local convergence of iterative methods for multiple roots including when the multiplicity is unknown

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Alarcon, Diego es_ES
dc.contributor.author Hueso, Jose L. es_ES
dc.contributor.author Martínez Molada, Eulalia es_ES
dc.date.accessioned 2021-02-09T04:32:26Z
dc.date.available 2021-02-09T04:32:26Z
dc.date.issued 2020-02-01 es_ES
dc.identifier.issn 0020-7160 es_ES
dc.identifier.uri http://hdl.handle.net/10251/160908
dc.description.abstract [EN] In this paper we propose an alternative for the study of local convergence radius and the uniqueness radius for some third-order methods for multiple roots whose multiplicity is known. The main goal is to provide an alternative that avoids the use of sophisticated properties of divided differences that are used in already published papers about local convergence for multiple roots. We defined the local study by using a technique taking into consideration a bounding condition for the derivative of the function with i=1,2. In the case that the method uses first and second derivative in its iterative expression and i=1 in case the method only uses first derivative. Furthermore we implement a numerical analysis in the following sense. Since the radius of local convergence for high-order methods decreases with the order, we must take into account the analysis of ITS behaviour when we introduce a new iterative method. Finally, we have used these iterative methods for multiple roots for the case where the multiplicity m is unknown, so we estimate this factor by different strategies comparing the behaviour of the corresponding estimations and how this fact affect to the original method. es_ES
dc.description.sponsorship This work was supported by Secretaria de Educacion Superior, Ciencia, Tecnologia e Innovacion (Convocatoria Abierta 2015 fase II). es_ES
dc.language Inglés es_ES
dc.publisher Taylor & Francis es_ES
dc.relation.ispartof International Journal of Computer Mathematics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Nonlinear equations es_ES
dc.subject Iterative methods es_ES
dc.subject Multiple roots es_ES
dc.subject Convergence ball es_ES
dc.subject Local convergence es_ES
dc.subject Nonlinear algebraic or transcendental equations es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title An alternative analysis for the local convergence of iterative methods for multiple roots including when the multiplicity is unknown es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1080/00207160.2019.1589460 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F089/ES/Resolución de ecuaciones y sistemas no lineales mediante técnicas iterativas: análisis dinámico y aplicaciones/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095896-B-C22/ES/DISEÑO, ANALISIS Y ESTABILIDAD DE PROCESOS ITERATIVOS APLICADOS A LAS ECUACIONES INTEGRALES Y MATRICIALES Y A LA COMUNICACION AEROESPACIAL/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Alarcon, D.; Hueso, JL.; Martínez Molada, E. (2020). An alternative analysis for the local convergence of iterative methods for multiple roots including when the multiplicity is unknown. International Journal of Computer Mathematics. 97(1-2):312-329. https://doi.org/10.1080/00207160.2019.1589460 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1080/00207160.2019.1589460 es_ES
dc.description.upvformatpinicio 312 es_ES
dc.description.upvformatpfin 329 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 97 es_ES
dc.description.issue 1-2 es_ES
dc.relation.pasarela S\387554 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Secretaría de Educación Superior, Ciencia, Tecnología e Innovación, Ecuador es_ES
dc.description.references Argyros, I. (2003). On The Convergence And Application Of Newton’s Method Under Weak HÖlder Continuity Assumptions. International Journal of Computer Mathematics, 80(6), 767-780. doi:10.1080/0020716021000059160 es_ES
dc.description.references Hueso, J. L., Martínez, E., & Teruel, C. (2014). Determination of multiple roots of nonlinear equations and applications. Journal of Mathematical Chemistry, 53(3), 880-892. doi:10.1007/s10910-014-0460-8 es_ES
dc.description.references McNamee, J. M. (1998). A comparison of methods for accelerating convergence of Newton’s method for multiple polynomial roots. ACM SIGNUM Newsletter, 33(2), 17-22. doi:10.1145/290590.290592 es_ES
dc.description.references Ortega, J. M. (1974). Solution of Equations in Euclidean and Banach Spaces (A. M. Ostrowski). SIAM Review, 16(4), 564-564. doi:10.1137/1016102 es_ES
dc.description.references Osada, N. (1994). An optimal multiple root-finding method of order three. Journal of Computational and Applied Mathematics, 51(1), 131-133. doi:10.1016/0377-0427(94)00044-1 es_ES
dc.description.references Schr�der, E. (1870). Ueber unendlich viele Algorithmen zur Aufl�sung der Gleichungen. Mathematische Annalen, 2(2), 317-365. doi:10.1007/bf01444024 es_ES
dc.description.references Vander Stracten, M., & Van de Vel, H. (1992). Multiple root-finding methods. Journal of Computational and Applied Mathematics, 40(1), 105-114. doi:10.1016/0377-0427(92)90045-y es_ES
dc.description.references Zhou, X., Chen, X., & Song, Y. (2013). On the convergence radius of the modified Newton method for multiple roots under the center–Hölder condition. Numerical Algorithms, 65(2), 221-232. doi:10.1007/s11075-013-9702-2 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem